참고문헌
- Akritas MG (1988). Pearson-type goodness-of-fit tests: the univariate case. Journal of the American Statistical Association, 83, 222-230. https://doi.org/10.1080/01621459.1988.10478590
- Balakrishnan N and KateriM(2008). On the maximum likelihood estimation of parameters ofWeibull distribution based on complete and censored data. Statistics and Probability Letters, 78, 2971-2975. https://doi.org/10.1016/j.spl.2008.05.019
- Breslow N and Crowley J (1974). A large sample study of the life table and product limit estimates under random censorships. The Annals of Statistics, 2, 437-453. https://doi.org/10.1214/aos/1176342705
- Chen CH (1984). A correlation goodness-of-fit test for randomly censored data. Biometrika, 71, 315-322. https://doi.org/10.1093/biomet/71.2.315
- Chen YY, Hollander M, and Langberg NA (1982). Small-sample results for the Kaplan Meier estimator. Journal of the American statistical Association, 77, 141-144. https://doi.org/10.1080/01621459.1982.10477777
- Csorgo S and Horvath L (1981). On the Koziol-Green model for random censorship. Biometrika, 68, 391-401.
- D'Agostino RB (1986). Graphical analysis. In RB D'Agostino and MA Stephens (Eds), Goodnessof-fit Techniques (pp. 7-62), Marcel Dekker, New York.
- Efron B (1967). The two sample problem with censored data. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, 831-853.
- Freireich EJ, Gehan E, Frei E, et al. (1963). The effect of 6-mercaptopurine on the duration of steroidinduced remissions in acute leukemia: a model for evaluation of other potentially useful therapy. Blood, 21, 699-716.
- Hollander M and Pena EA (1992). A chi-squared goodness-of-fit test for randomly censored data. Journal of the American Statistical Association, 87, 458-463. https://doi.org/10.1080/01621459.1992.10475226
- Kaplan EL and Meier P (1958). Nonparametric estimation from incomplete observations. Journal of the American Statistical Association, 53, 457-481. https://doi.org/10.1080/01621459.1958.10501452
- Kim N (2011). Testing log normality for randomly censored data. The Korean Journal of Applied Statistics, 24, 883-891. https://doi.org/10.5351/KJAS.2011.24.5.883
- Kim N (2012). Testing exponentiality based on EDF statistics for randomly censored data when the scale parameter is unknown. The Korean Journal of Applied Statistics, 25, 311-319. https://doi.org/10.5351/KJAS.2012.25.2.311
- Kim N (2016). On the maximum likelihood estimators for parameters of a Weibull distribution under random censoring, Communications for Statistical Applications and Methods, 23, 241-250 https://doi.org/10.5351/CSAM.2016.23.3.241
- Kleinbaum DG and Klein M (2005). Survival Analysis : A Self-Learning Test, Springer, New York.
- Koziol JA (1980). Goodness-of-fit tests for randomly censored data. Biometrika, 67, 693-696. https://doi.org/10.1093/biomet/67.3.693
- Koziol JA and Green SB (1976). A Cramer-von Mises statistic for randomly censored data. Biometrika, 63, 465-474.
- Kundu D (2007). On hybrid censored Weibull distribution. Journal of Statistical Planning and Inference, 137, 2127-2142. https://doi.org/10.1016/j.jspi.2006.06.043
- Lee ET and Wang JW (2003). Statistical Methods for Survival Data Analysis (3rd ed), John Wiley & Sons Inc., Hoboken. Jersey.
- LiaoMand Shimokawa T (1999). A new goodness-of-fit test for type-I extreme value and 2-parameter Weibull distributions with estimated parameters. Journal of Statistical Computation and Simulation, 64, 23-48. https://doi.org/10.1080/00949659908811965
- Meier P (1975). Estimation of a distribution function from incomplete observations. In J Gani (Ed), Perspectives in Probability and Statistics (pp. 67-87), Academic Press, London.
- Michael JR and Schucany WR (1986). Analysis of data from censored samples, In RB D'Agostino and MA Stephens (Eds), Goodness-of-fit techniques (pp. 461-496), Marcel Dekker, New York.
- Nair VN (1981). Plots and tests for goodness of fit with randomly censored data. Biometrika, 68, 99-103. https://doi.org/10.1093/biomet/68.1.99
- Pareek B, Kundu D, and Kumar S (2009). On progressively censored competing risks data forWeibull distributions. Computational Statistics and Data Analysis, 53, 4083-4094. https://doi.org/10.1016/j.csda.2009.04.010
피인용 문헌
- Use of Lèvy distribution to analyze longitudinal data with asymmetric distribution and presence of left censored data vol.25, pp.1, 2018, https://doi.org/10.29220/CSAM.2018.25.1.043