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Abstract
This paper investigates a convergence rate of a test statistics given by two scale sampling method based

on Aı̈t-Sahalia and Jacod (Annals of Statistics, 37, 184–222, 2009). This statistics tests for longitudinal data
having the existence of long memory dependence driven by fractional Brownian motion with Hurst parameter
H ∈ (1/2, 1). We obtain an upper bound in the Kolmogorov distance for normal approximation of this test
statistic. As a main tool for our works, the recent results in Nourdin and Peccati (Probability Theory and Related
Fields, 145, 75–118, 2009; Annals of Probability, 37, 2231–2261, 2009) will be used. These results are obtained
by employing techniques based on the combination between Malliavin calculus and Stein’s method for normal
approximation.

Keywords: Malliavin calculus, multiple stochastic integrals, central limit theorem, Hurst parameter,
longitudinal data, fractional Brownian motion

1. Introduction

A fractional Brownian motion {BH , t ≥ 0} with Hurst parameter H ∈ (0, 1) is a centered Gaussian
process with the covariance function

E
[
BH(t)BH(s)

]
=

1
2

(
t2H + s2H − |t − s|2H

)
, t, s ≥ 0.

The Hurst parameter H ∈ (0, 1) characterizes the self-similar behavior of the process. This param-
eter gives the long-range dependence property of its increments and decides the regularity of the
sample paths. Therefore, the problem of properly estimating Hurst parameter H is of the most impor-
tance. Many methods to estimate H of {BH , t ≥ 0} have been proposed to solve this problem, such
as wavelets, k-variations, variograms, maximum likelihood method and spectral methods, some of
which can be found in the book by Beran (1994).

This paper investigates a convergence rate of test statistics Fn to see if the error is a Brownian
motion or a true fractional Brownian motion in the following longitudinal data:

Y(t) = β0 + β1x(t) + BH(t), t ∈ [0,T ], (1.1)

where x(t) is a non-random function. In terms of the Hurst parameter, this test can be formulated as:

H0 : H =
1
2

vs. H1 : H ,
1
2
.
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This test statistics Fn, based on the ratio of two realized power variations with different sampling
frequencies, has the form:

Fn =

∑[T/k∆n]
l=1

∣∣∣∆n
l,kY

∣∣∣2∑[T/∆n]
l=1

∣∣∣∆n
l Y

∣∣∣2 , (1.2)

where ∆n
l Y = Y(l∆n)−Y((l−1)∆n) and ∆n

l,kY = Y(lk∆n)−Y((l−1)k∆n) for determined positive integer
k. In the paper Kim and Park (2015), authors prove that

1
√
∆n

(
Fn − k2H−1

) L→ N (
0,

k4H−2σ2

T 2

)
, (1.3)

where σ2 is given by

σ2 = 2T (k + 1)
∑
j∈Z

ρH( j)2 − 2k−2H
∑
l∈Z

k∑
j=1

 k∑
r=1

ρH(lk + r − j)


2

. (1.4)

Here ρH is the covariance function of a fractional Brownian motion expressed as

ρH(l) =
1
2

(
|l + 1|2H + |l − 1|2H − 2|l|2H

)
.

From (1.3), we reject H0 if

|Fn − 1| >
√
∆nz α

2

σ

T
,

where P(Z ≥ zα/2) = α/2 [Z ∼ N(0, 1)].
Asymptotic analysis focuses on only describing that the properties (e.g., the central limit theorem

(CLT) in our case) of a statistics even when the sample size is finite and similar to the properties when
the sample size becomes arbitrarily large. Our main result may give information on how similar the
distribution of Fn is with the Gaussian distribution according to sample size.

If the data {Y(t)} have the long memory property for each series, i.e., H0 is rejected, then we
may use the model (1.1) for a statistical application. Suppose we observe {Yi(t)} at times j∆n, j =
1, . . . , [T/∆n] and at cross section i = 1, . . . , d. Assume that all series in the longitudinal data have the
same Hurst parameter H. For practical purpose, we have to estimate Hurst parameter H first, and then
a realization, obtained by the data Yi, of the estimator Ĥols(n, d) proposed in this paper is plugged into
H in the model (1.1). The estimator Ĥols(n, d) given above is of the following form:

Ĥols(n, d) =

∑d
i=1 log

(
U(i)

n

)
+ d log k

d log k2 ,

where

U(i)
n =

∑[T/k∆n]
l=1

∣∣∣∆n
l,kYi

∣∣∣2∑[T/∆n]
l=1

∣∣∣∆n
l Yi

∣∣∣2 .
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The model (1.1) becomes

Yi(t) = (β0 + ui) + β1xi(t) + ϵi(t), i = 1, . . . , d and t ∈ [0,T ], (1.5)

where the error term ϵi(t) is a fractional Brownian motion with ϵi(t + h) − ϵi(t) ∼ N(0, σ2h2Ĥols(n,d)).
After that, we may use the usual longitudinal data analysis in order to estimate the linear regression
model (1.5).

The main tool for the proof of a Berry-Esseen bound is the combination of Stein’s method and
Malliavin calculus as well as the result in Nourdin and Peccati (2009a, 2009b). Recently, Berry-
Esseen bounds for various statistics for estimators of parameters , involved in stochastic differential
equations and stochastic partial differential equations, have been much studied (Kim and Park, 2016,
2017a, 2017b).

2. Preliminaries

In this section, we briefly review some facts about Malliavin calculus for Gaussian processes. For a
more detailed reference, see Nualart (2006). Suppose that H is a real separable Hilbert space with
scalar product denoted by ⟨ · , · ⟩H. Let X = {X(h), h ∈ H} be an isonormal Gaussian process, that is a
centered Gaussian family of random variables such that E[X(h)X(g)] = ⟨h, g⟩H. If X = BH , then

E
[
BH(t)BH(s)

]
= ⟨1[0,s], 1[0,t]⟩H =

1
2

(
t2H + s2H − |t − s|2H

)
.

For every q ≥ 1, let Hq be the qth Wiener chaos of X, that is the closed linear subspace of L2(Ω)
generated by {Hq(X(h)) : h ∈ H, ∥h∥H = 1}, where Hq is the qth Hermite polynomial. We define a
linear isometric mapping Iq : H⊙q → Hq by Iq(h⊗q) = Hq(X(h)), where H⊙n is the symmetric tensor
product. The following duality formula holds

E[FIq(h)] = E
[⟨DqF, h⟩H⊗q

]
, (2.1)

for any element h ∈ H⊙q and any random variable F ∈ Dq,2. Here

∥F∥2q,2 = E
[
F2

]
+

q∑
k=1

E
[∥∥∥DkF

∥∥∥2
H⊗k

]
,

where Dk is the iterative Malliavin derivative. The linear isometric mapping Iq satisfies Iq( f ) = Iq( f̃ )
and

E
[
Ip( f )Iq(g)

]
=

 0, if p , q,
p!

⟨
f̃ , g̃

⟩
H
, if p = q, (2.2)

where f̃ denotes the symmetrization of f .
If f ∈ H⊙p, the Malliavin derivative of the multiple stochastic integrals is given by

DzIq( fq) = qIq−1

(
fq(·, z)

)
, for z ∈ [0, 1]2. (2.3)

Let {el, l ≥ 1} be a complete orthonormal system in H.
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If f ∈ H⊙p and g ∈ H⊙q, the contraction f ⊗r g, 1 ≤ r ≤ p ∧ q, is the element of H⊗(p+q−2r) defined
by

f ⊗r g =
∞∑

l1,...,lr=1

⟨ f , el1 ⊗ · · · ⊗ elr ⟩H⊗r ⊗ ⟨g, el1 ⊗ · · · ⊗ elr ⟩H⊗r . (2.4)

Notice that the tensor product f ⊗ g and the contraction f ⊗r g, 1 ≤ r ≤ p ∧ q are not necessarily
symmetric even though f and g are symmetric. We will denote their symmetrizations by f ⊗̃ g and
f ⊗̃r g, respectively. The following formula for the product of the multiple stochastic integrals will be
frequently used to prove the main result in this paper:

Proposition 1. Let f ∈ H⊙p and g ∈ H⊙q be two symmetric functions. Then

Ip( f )Iq(g) =
p∧q∑
r=0

r!
(
p
r

)(
q
r

)
Ip+q−2r( f ⊗r g). (2.5)

Now we introduce the infinitesimal generator L of the Ornstein-Uhlenbeck semigroup and the relation
of the operator L with the operators D and δ (see Subsection 1.4 in Nualart (2006) for more details).
Let F ∈ L2(Ω) be a square integrable random variable. For each n ≥ 1, we will denote by Jn :
L2(Ω)→ Hn the orthogonal projection on the nth Wiener chaosHn. The operator L is defined through
the projection operator Jn, n = 0, 1, 2 . . . , as L =

∑∞
n=0 −nJnF, and is called the infinitesimal generator

of the Ornstein-Uhlenbeck semigroup. The relationship between the operator D, δ and L is given as:
δDF = −LF, that is, for F ∈ L2(Ω) the statement F ∈ Dom(L) is equivalent to F ∈ Dom(δD) (i.e.
F ∈ D1,2 and DF ∈ Dom(δ)), and in this case δDF = −LF. We also define the operator L−1, which
is the pseudo-inverse of L, as L−1F =

∑∞
n=1 Jn(F)/n. Note that L−1 is an operator with values in D2,2

and LL−1F = F − E[F] for all F ∈ L2(Ω).

3. Main results

In this section, we investigate a convergence rate of CLT in (1.3). First recall that for every z ∈ R, the
function

fz(x) = e
x2
2

∫ x

−∞

{
1(−∞,z](u) − Φ(z)

}
e−

u2
2 du

=


√

2πe
x2
2 Φ(x){1 − Φ(z)}, if x ≤ z,

√
2πe

x2
2 Φ(z){1 − Φ(x)}, if x > z

(3.1)

is a solution to the following Stein equation such that ∥ fz∥∞ ≤
√

2π/4 and ∥ f ′z ∥∞ ≤ 1:

f ′(x) − x f (x) = 1(−∞,z](x) − Φ(z), (3.2)

The derivative of fz is given by

f ′z (x) =


{1 − Φ(z)}

{
1 +
√

2πxe
x2
2 Φ(x)

}
, if x ≤ z,

Φ(z)
[
−1 +

√
2πxe

x2
2 {1 − Φ(x)}

]
, if x > z.

(3.3)
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We use the following lemma, given by Michael and Pfanzagl (1971), to prove our main result.

Lemma 1. Let (Ω,F,P) be a probability space and Gn and Vn be a F-measurable function such that
Vn > 0 a.s. for all n. Then for any ϵ > 0, we have

sup
z∈R

∣∣∣∣∣∣P
(
Gn

Vn
≤ z

)
− Pr(Z ≤ z)

∣∣∣∣∣∣ = sup
z∈R
|P(Un ≤ z) − P(Z ≤ z)| + P(|Vn − 1| ≥ ϵ) + ϵ. (3.4)

Now we obtain the Berry-Esseen bound of the test statistics Fn given in (1.2).

Theorem 1. Suppose that |x(t) − x(s)| ≤ c|t − s| for c > 0, where x(t) is given in the equation (1.5).
If H > 1/2, there exists a constant c > 0 such that, for sufficiently large n,

sup
z∈R

∣∣∣∣∣∣P
(

T
√
∆nk2H−1σ

(
Fn − k2H−1

)
≤ z

)
− P(Z ≤ z)

∣∣∣∣∣∣ ≤ c min
{
∆

3−4H
2

n ,∆
1−H

2
n

}
. (3.5)

where σ2 is given in (1.4).

Proof: Throughout this proof, c stands for an absolute constant with possibly different values in
different places. Using Lemma 1, we have that for any 0 < ϵ < 1,

sup
z∈R

∣∣∣∣∣∣P
(

T
√
∆nk2H−1σ

(
Fn − k2H−1

)
≤ z

)
− Pr(Z ≤ z)

∣∣∣∣∣∣
= sup

z∈R

∣∣∣∣∣∣∣∣∣P
 T
√
∆nk2H−1σ

∑[T/k∆n]
l=1

∣∣∣∆n
l,kY

∣∣∣2 − k2H−1 ∑[T/∆n]
l=1

∣∣∣∆n
l Y

∣∣∣2∑[T/∆n]
l=1

∣∣∣∣∆n
l,kY

∣∣∣∣2 ≤ z

 − P(Z ≤ z)

∣∣∣∣∣∣∣∣∣
= sup

z∈R

∣∣∣∣∣∣∣P
 ∆1−2H

n√
∆nk2H−1σ

[T/k∆n]∑
l=1

∣∣∣∆n
l,kY

∣∣∣2 − k2H−1
[T/∆n]∑

l=1

∣∣∣∆n
l Y

∣∣∣2 ≤ z

 − P(Z ≤ z)

∣∣∣∣∣∣∣
+ P


∣∣∣∣∣∣∣∆1−2H

n

T

[T/∆n]∑
l=1

∣∣∣∆n
l Y

∣∣∣2 − 1

∣∣∣∣∣∣∣ ≥ ϵ
 + ϵ. (3.6)

First consider the second term in (3.6). We write

[T/∆n]∑
l=1

∣∣∣∆n
l Y

∣∣∣2 = [T/∆n]∑
l=1

{
β2

1

(
∆n

l x
)2
+ 2β1

(
∆n

l x
) (
∆n

l BH
)
+

(
∆n

l BH
)2
}

:= An
1 + An

2 + An
3. (3.7)

Therefore,

P


∣∣∣∣∣∣∣∆1−2H

n

T

[T/∆n]∑
l=1

∣∣∣∆n
l Y

∣∣∣2 − 1

∣∣∣∣∣∣∣ ≥ ϵ
 ≤ 1

ϵ

{
∆1−2H

n

T

∣∣∣An
1

∣∣∣ + ∆1−2H
n

T
E

[∣∣∣An
2

∣∣∣] + E [∣∣∣∣∣∣∆1−2H
n

T
An

3 − 1

∣∣∣∣∣∣
]}
. (3.8)

By the assumption on x(t), the first term in (3.8) can be estimated as

∆1−2H
n

T

∣∣∣An
1

∣∣∣ ≤ cβ2
1
∆1−2H

n

T

[
T
∆n

]
∆2

n ≤ c∆2(1−H)
n . (3.9)
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By the Cauchy-Schwartz inequality, we get

∆1−2H
n

T
E

[∣∣∣An
2

∣∣∣] ≤ cβ1
∆1−2H

n

T
∆n

[T/∆n]∑
l=1

E
[∣∣∣∆n

l BH
∣∣∣]

≤ cβ1
∆1−2H

n

T
∆n

[T/∆n]∑
l=1

√
E

[(
∆n

l BH
)2
]

≤ c∆1−H
n . (3.10)

As for the third term in (3.8), we estimate

E
[∣∣∣∣∣∣∆1−2H

n

T
An

3 − 1

∣∣∣∣∣∣
]
=
∆1−2H

n

T
E

[∣∣∣∣∣An
3 −

T
∆n
∆2H

n

∣∣∣∣∣]
≤ ∆

1−2H
n

T
E

[∣∣∣∣∣∣An
3 −

[
T
∆n

]
∆2H

n

∣∣∣∣∣∣
]
+ ∆2H

n

(
T
∆n
−

[
T
∆n

])
. (3.11)

By using the computation of Var(
∑[T/∆n]

l=1 (∆n
l BH)2) in Kim and Park (2015), the first term in (3.11) can

be bounded

∆1−2H
n

T
E

[∣∣∣∣∣∣An
3 −

[
T
∆n

]
∆2H

n

∣∣∣∣∣∣
]
=
∆1−2H

n

T
E


∣∣∣∣∣∣∣
[T/∆n]∑

l=1

(
∆n

l BH
)2 −

[T/∆n]∑
l=1

E
[(
∆n

l BH
)2
]∣∣∣∣∣∣∣


≤ ∆
1−2H
n

T

√√√
Var

[T/∆n]∑
l=1

(
∆n

l BH
)2


≤ ∆
1−2H
n

T

√[
T
∆n

]
∆2H

n

√[
T
∆n

]2H

−
([

T
∆n

]
− 1

)2H

. (3.12)

By the mean value theorem, we have [T/∆n]2H − ([T/∆n] − 1)2H ≤ 2H([T/∆n])2H−1. This inequality
proves that the right-hand side of (3.12) can be estimated as

∆1−2H
n

T
E

[∣∣∣∣∣∣An
3 −

[
T
∆n

]
∆2H

n

∣∣∣∣∣∣
]
≤ c∆1−H

n . (3.13)

From (3.11) and (3.13), it follows that

E
[∣∣∣∣∣∣∆1−2H

n

T
An

3 − 1

∣∣∣∣∣∣
]
≤ c

(
∆1−H

n + ∆2H
n

)
. (3.14)

By combining the above estimates (3.9), (3.10), and (3.14), we obtain that for every ϵ > 0,

P


∣∣∣∣∣∣∣∆1−2H

n

T

[T/∆n]∑
l=1

∣∣∣∆n
l Y

∣∣∣2 − 1

∣∣∣∣∣∣∣ ≥ ϵ
 ≤ c

∆1−H
n

ϵ
(3.15)

Let us set

Un =
∆1−2H

n√
∆nk2H−1σ

[T/k∆n]∑
l=1

∣∣∣∆n
l,kY

∣∣∣2 − k2H−1
[T/∆n]∑

l=1

∣∣∣∆n
l Y

∣∣∣2 .
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Using the multiplication formula of multiple stochastic integral in (2.5) yields

(k∆n)1−2H
[T/k∆n]∑

l=1

∣∣∣∆n
l,kBH

∣∣∣2 = I2( fn,k,2) + (k∆n)k
[

T
k∆n

]
, (3.16)

∆1−2H
n

[T/∆n]∑
l=1

∣∣∣∆n
l BH

∣∣∣2 = I2( fn,1,2) + ∆n

[
T
∆n

]
, (3.17)

where the kernels fn,k,2 are given by

fn,k,2 = (k∆n)1−2H
[T/k∆n]∑

l=1

1⊗2
[(l−1)k∆n,lk∆n].

Also we define a kernel fn,k,1 as:

fn,k,1 = 2β1(k∆n)1−2H
[T/k∆n]∑

l=1

(
∆n

l,k x
)

1[(l−1)k∆n,lk∆n].

Hence it follows from (3.16) and (3.17) that

Un =
1
√
∆nσ

[
I1

(
fn,k,1 − fn,1,1

)
+ I2

(
fn,k,2 − fn,1,2

)]
+

1
√
∆nσ

E[Un]. (3.18)

Here E[Un] is given by

E[Un] = (k∆n)1−2H
[T/k∆n]∑

l=1

β2
1

(
∆n

l,k x
)2 − ∆1−2H

n

[T/∆n]∑
l=1

β2
1

(
∆n

l x
)2
+ (k∆n)

[
T

k∆n

]
− ∆n

[
T
∆n

]
.

Applying Lemma 2.3 in Nourdin and Peccati (2009b) to the first term of the right-hand side (3.6), we
have, using ∥ fz∥∞ ≤

√
2π/4 and ∥ f ′z ∥∞ ≤ 1, that

sup
z∈R
|P(Un ≤ z) − P(Z ≤ z)| =

∣∣∣∣E [
f ′z (Un) − Un fz(Un)

]∣∣∣∣
=

∣∣∣∣∣∣E [
f ′z (Un)

(
1 − ⟨DUn,−DL−1Un⟩H

)]
− 1
√
∆nσ

E[Un]E
[
f ′z (Un)

]∣∣∣∣∣∣
≤

√
E

[(
1 − ⟨DUn,−DL−1Un⟩H

)2
]
+

√
2π

4
√
∆nσ

|E[Un]| . (3.19)

For simplicity, we set

gn,1 =
fn,k,1 − fn,1,1√
∆nσ

and gn,2 =
fn,k,2 − fn,1,2√
∆nσ

.

Following the proof of Proposition 3.7 in Nourdin and Peccati (2009b), we estimate

E
[
(1 − ⟨DUn,−DL−1Un⟩H)2

]
= E

[
(1 − ⟨gn,1 + 2I1(gn,2), gn,1 + I1(gn,2)⟩H)2

]
= E

[
(1 − ∥gn,1∥2H − 3⟨gn,1, I1(gn,2)⟩H − 2⟨I1(gn,2), I1(gn,2)⟩H)2

]
≤ 2

(
1 − ∥gn,1∥2H − 2∥gn,2∥2H⊗2

)2
+ 18∥gn,1 ⊗1 gn,2∥2H + 16∥gn,2 ⊗1 gn,2∥2H⊗2 . (3.20)
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Obviously, the first term can be estimated as

(
1 − ∥gn,1∥2H − 2∥gn,2∥2H⊗2

)2

≤ 2∥gn,1∥4H + 2
(
1 − 2∥gn,2∥2H⊗2

)2

≤ 4
∆2

nσ
4

(
∥ fn,k,1∥4H + ∥ fn,1,1∥4H

)
+

2
σ4

{
σ2 − 2

∆n

(
∥ fn,k,2∥2H⊗2 − 2⟨ fn,k,2, fn,1,2⟩H⊗2 + ∥ fn,1,2∥2H⊗2

)}2

:= Bn
1 + Bn

2.

We note that

|ρH(l)| = H(2H − 1)|l|2H−2 + o
(
|l|2H−2

)
as |l| → ∞. (3.21)

For sufficiently large n, we estimate, from (3.21),

[T/k∆n]∑
l,l′=1

|ρH(l − l′)| ≤
∑

| j|<[T/∆n]

([
T
∆n

]
− | j|

) ∣∣∣∣∣∣∣ j′ + 1
∣∣∣2H
+

∣∣∣ j′ − 1
∣∣∣2H − 2| j|2H

∣∣∣∣
≤ T

k

[T/k∆n]∑
j=1

∆−1
n j2H−2 ≤ T

k
∆−1

n

1 +
([

T
k∆n

])2H−1


≤ c
(
∆−1

n + ∆
−2H
n

)
. (3.22)

Direct computation and the estimate (3.22) give

Bn
1 ≤ c

1
∆2

nσ
4∆

8−4H
n


k

[T/k∆n]∑
l,l′=1

ρH(l − l′)


2

+

[T/∆n]∑
l,l′=1

ρH(l − l′)


2

≤ c
(
∆4−4H

n + ∆6−8H
n

)
. (3.23)

As for the term Bn
2, we compute the three terms in Bn

2

∆−1
n ∥ fn,k,2∥2H⊗2 = ∆

−1
n (k∆n)2−4H

[T/k∆n]∑
l,l′=1

⟨
1⊗2

[(l−1)k∆n,lk∆n], 1
⊗2
[(l′−1)k∆n,l′k∆n]

⟩
H⊗2

= ∆−1
n (k∆n)2

[T/k∆n]∑
l,l′=1

ρH(l − l′)2

= ∆−1
n k2

∑
| j|<[T/k∆n]

∆n

([
T

k∆n

]
− | j|

)
ρH( j)2. (3.24)
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Using a similar argument as for the first term in (3.24) yields

∆−1
n ⟨ fn,k,2, fn,1,2⟩H⊗2 = k1−2H∆1−4H

n

[T/k∆n]∑
l=1

[T/∆n]∑
l′=1

⟨
1⊗2

[(l−1)k∆n,lk∆n], 1
⊗2
[(l′−1)∆n,l′∆n]

⟩
H⊗2

= k1−2H∆n

[T/k∆n]∑
l=1

[T/k∆n]∑
l′=1

k∑
j=1

(⟨
1[(l−1)k,lk], 1[(l′−1)k+ j−1,(l′−1)k+ j]

⟩
H

)2

= k1−2H∆n

[T/k∆n]∑
l=1

[T/k∆n]∑
l′=1

k∑
j=1

 k∑
r=1

ρH((l − l′)k + r − j)


2

= k1−2H∆n

∑
|l|<[T/k∆n]

k∑
j=1

([T/k∆n] − |l|)
 k∑

r=1

ρH(lk + r − j)


2

. (3.25)

Substituting k = 1 into k in (3.24), we have

∆−1
n ∥ fn,1,2∥2H⊗2 = ∆

−1
n

∑
| j|<[T/∆n]

∆n

([
T
∆n

]
− | j|

)
ρH( j)2. (3.26)

Combining the above results (3.24), (3.25), and (3.26), we obtain

Bn
2 ≤

2
σ4

2
∣∣∣∣∣∣∣∣kT

∑
j∈Z

ρH( j)2 − k2
∑

| j|<[T/k∆n]

∆n

([
T

k∆n

]
− | j|

)
ρH( j)2

∣∣∣∣∣∣∣∣
2

+ 4

∣∣∣∣∣∣∣∣k−2H
∑
l∈Z

k∑
j=1

 k∑
r=1

ρH(lk + r − j)


2

− k1−2H∆n

∑
|l|<[T/k∆n]

k∑
j=1

([
T

k∆n

]
− |l|

)  k∑
r=1

ρH(lk + r − j)


2
∣∣∣∣∣∣∣∣
2

+ 2

∣∣∣∣∣∣∣∣T
∑
j∈Z

ρH( j)2 −
∑

| j|<[T/∆n]

∆n

([
T
∆n

]
− | j|

)
ρH( j)2

∣∣∣∣∣∣∣∣
2

:= Bn
21 + Bn

22 + Bn
23.

Obviously, for sufficiently large n, we have

Bn
21 ≤

4
σ4

kT
∑

| j|≥[T/k∆n]

ρH( j)2 + kT
∑

| j|<[T/k∆n]

{
1 − k∆n

T

[
T

k∆n

]}
ρH( j)2 + k2∆n

∑
| j|<[T/k∆n]

| j|ρH( j)2

2

≤ c
{
∆3−4H

n + ∆n

(
1 + ∆3−4H

n

)
+ ∆n

(
1 + ∆2−4H

n

)}2

≤ c∆2(3−4H)
n . (3.27)

By a similar estimate as for the term Bn
21 in (3.27), we get Bn

22 ≤ c∆2(3−4H)
n and Bn

23 ≤ c∆2(3−4H)
n . Thus

we have

Bn
2 ≤ c∆2(3−4H)

n . (3.28)
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As for the second and third terms in (3.20), observe that ∥gn,1 ⊗1 gn,2∥2H ≤ c∥ fn,k,1 ⊗1 fn,k,2∥2H. First
write

fn,k,1 ⊗1 fn,k,2 =
2β1(k∆n)2−4H

∆nσ2

[T/k∆n]∑
l,l′=1

(
∆n

l,k x
) ⟨

1[(l−1)k∆n,lk∆n], 1[(l′−1)k∆n,l′k∆n]
⟩
H 1[(l′−1)k∆n,l′k∆n]

=
2β1(k∆n)2−2H

∆nσ2

[T/k∆n]∑
l,l′=1

(
∆n

l,k x
)
ρH(l − l′)1[(l′−1)k∆n,l′k∆n]. (3.29)

Therefore,

∥∥∥ fn,k,1 ⊗1 fn,k,2
∥∥∥2
H
=

4β2
1(k∆n)4

∆2
nσ

4

[T/k∆n]∑
l,l′, j, j′=1

(
∆n

l,k x
) (
∆n

j,k x
)
ρH

(
l − l′

)
ρH

(
j − j′

)
ρH

(
l′ − j′

)
≤ c∆4

n

[T/k∆n]∑
l,l′, j, j′=1

ρH
(
l − l′

)
ρH

(
j − j′

)
ρH

(
l′ − j′

)
. (3.30)

For the sum in (3.30), we decompose as follows

[T/k∆n]∑
l>l′> j> j′

+

[T/k∆n]∑
l>l′> j′> j

+ · · · . (3.31)

For the first term, we have

∆4
n

[T/k∆n]∑
l>l′> j> j′

ρH
(
l − l′

)
ρH

(
j − j′

)
ρH

(
l′ − j′

) ≤ ∆4
n

[T/k∆n]∑
l>l′> j> j′

(
l − l′

)2H−2 (
j − j′

)4H−4

≤ ∆2
n

[T/k∆n]∑
l=1

l2H−2
[T/k∆n]∑

j=1

j4H−4

≤ c∆2
n


1 + [

T
k∆n

]2H−1 1 + [
T

k∆n

]4H−3


≤ c∆3−2H
n . (3.32)

Obviously, the same bound also holds for the other terms in (3.31). As for the last term in (3.20),
observe that ∥gn,2 ⊗1 gn,2∥2H ≤ c∥ fn,k,2 ⊗1 fn,k,2∥2H.

fn,k,2 ⊗1 fn,k,2 = (k∆n)2−4H
[T/k∆n]∑

l,l′=1

⟨1[(l−1)k∆n,lk∆n], 1[(l′−1)k∆n,l′k∆n]⟩H × 1[(l−1)k∆n,lk∆n]⊗̃1[(l′−1)k∆n,l′k∆n]

= (k∆n)2−2H
[T/k∆n]∑

l,l′=1

ρH
(
l − l′

)
1[(l−1)k∆n,lk∆n]⊗̃1[(l′−1)k∆n,l′k∆n]. (3.33)

Let us set ρn,H( j) = |ρn,H( j)|1{| j|≤[T/k∆n]}. By using the arguments in the quadratic variation of the
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fractional Brownian motion studied by Nourdin (2013), we obtain, from (3.33),

∥∥∥ fn,k,2 ⊗1 fn,k,2
∥∥∥2
H⊗2 =

4β2
1(k∆n)4

∆2
nσ

4

[T/k∆n]∑
l,l′, j, j′=1

ρH
(
l − l′

)
ρH( j − j′)ρH(l − j)ρH(l′ − j′)

≤ c∆2
n

[T/k∆n]∑
l, j′=1

∑
j,l′∈Z

ρn,H(l − l′)ρn,H( j − j′)ρn,H(l − j)ρn,H(l′ − j′)

≤ c∆n

∑
l∈Z

(ρn,H ∗ ρn,H)(l)2 ≤ k4∆n

 ∑
|l|≤[T/k∆n]

|ρH(l)| 43
3

≤ c∆n

1 + [
T

k∆n

] 8H−5
3


3

≤ c∆2(3−4H)
n . (3.34)

The last term in (3.19) can easily estimated as
√

2π
4
√
∆nσ

|E[Un]| ≤ c
(
∆

3−4H
2

n +
√
∆n

)
. (3.35)

By combining all these bounds (3.15), (3.23), (3.28), (3.32), (3.34), and (3.35), together with ϵ =
∆

(1−H)/2
n , the proof of Theorem is now completed. �

Remark 1. We are not sure that the upper bound, obtained in Theorem 1, is an optimal bound in
the following sense: the bound φ(Fn) is optimal for the sequence {Fn} with respect to some distance
d if there exist constants 0 < c < C < ∞, independent of n, such that

cφ(Fn) ≤ d(Fn,Z) ≤ Cφ(Fn), for all n ≥ 1. (3.36)

An optimal rates of convergence in the Kolmogorov distance will be derived in future studies; there-
fore, we should develop the techniques to find an lower bound.
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