References
- Asada, K. 1999. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology 50:601-639. https://doi.org/10.1146/annurev.arplant.50.1.601
- Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry. 72:248-254. https://doi.org/10.1016/0003-2697(76)90527-3
- Foyer, C.H., Descourvierse, P. and Kunert, K.J. 1994. Protection against oxygen radicals: an important defense mechanism studied in transgenic plants. Plant Cell Environment 17:507-523. https://doi.org/10.1111/j.1365-3040.1994.tb00146.x
- Hodges, D.M., DeLong, J.M, Forney, C.F. and Prange, R.K. 1999. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta. 207:604-611. https://doi.org/10.1007/s004250050524
- Kim, K.Y., Kwon, S.Y., Lee, H.S., Hur, Y., Bang, J.W. and Kwak, S.S. 2003. A novel oxidative stress-inducible peroxidase promoter from sweetpotato: molecular cloning and characterization in transgenic tobacco plants and cultured cells. Plant Molecular Biology. 51:831-838. https://doi.org/10.1023/A:1023045218815
- Kim, K.H., Alam, I., Lee, K.W., Sharmin, S.A., Kwak, S.S., Lee, S.Y. and Lee, B.H. 2010. Enhanced tolerance of transgenic tall fescue plants overexpressing 2-Cys peroxiredoxin against methyl viologen and heat stresses. Biotechnology Letters. 32:571-576. https://doi.org/10.1007/s10529-009-0185-0
- Kim, K.H., Alam, I., Kim, Y.G., Sharmin, S., Lee, K.W., Lee, S.H. and Lee B.H. 2012. Overexpression of a chloroplast-localized small heat shock protein OsHSP26 confers enhanced tolerance against oxidative and heat stresses in tall fescue. Biotechnology Letters. 34:371-377. https://doi.org/10.1007/s10529-011-0769-3
- Kim, Y.H., Lim, S., Yang, K.S., Kim, C.Y., Kwon, S.Y., Lee, H.S., Wang, X., Zhou, Z., Ma, D., Yun, D.J. and Kwak, S.S. 2009. Expression of Arabidopsis NDPK2 increases antioxidant enzyme activities and enhances tolerance to multiple environmental stresses in transgenic sweetpotato plants. Molecular Breeding. 24:233-244. https://doi.org/10.1007/s11032-009-9286-7
- Kim, M.D., Kim, Y.-H., Kwon, S.-Y., Yun, D.-J. Kwak, S.-S. and Lee, H.-S. 2010. Enhanced tolerance to methyl viologen-induced oxidative stress and high temperature in transgenic potato plants overexpressing the CuZnSOD, APX and NDPK2 genes. Physiologia Plantarum. 140:153-162. https://doi.org/10.1111/j.1399-3054.2010.01392.x
- Kim, Y.-H., Kim, M.D., Choi, Y.I., Park, S.-C., Yun, D.-J., Noh, E.W., Lee, H.-S and Kwak, S.-S. 2011. Transgenic poplar expressing Arabidopsis NDPK2 enhances growth as well as oxidative stress tolerance. Plant Biotechnology Journal. 9:334-347. https://doi.org/10.1111/j.1467-7652.2010.00551.x
- Lee, S.H., Lee, K.-W., Kim, K. H., Yn, D.-J., Kwak, S.-S. and Lee, B.-H. 2009. Characterization of transgenic tall fescue plants overexpressing NDP Kinase gene in response to cold stress. Journal of the Korean Society of Grassland and Forage Science. 29:299-306. https://doi.org/10.5333/KGFS.2009.29.4.299
- Lou, Y., Chen, L., Xu, Q. and Zhang, X. 2015. Genotypic variation of morphological traits in tall fescue (Festuca arundinacea Schreb.) accessions. Hortscience. 50:512-516.
- Moon, H., Lee, B., Choi, G., Shin, D., Prasad, D.T., Lee, O., Kwak, S.S., Kim, D.H., Nam, J., Bahk, J., Hong, J.C., Lee, S.Y., Cho, M.J., Lim, C.O., and Yun, D.J. 2003. NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proceedings of the National Academy of Sciences of the United States of America. 100:358-363. https://doi.org/10.1073/pnas.252641899
- Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiolgia Plantarum. 15:473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
- Qureshi, M.I., Abdin, M.Z., Ahmad, J. and Iqbal, M. 2013. Effect of long-term salinity on cellular antioxidants, compatible solute and fatty acid profile of Sweet annie (Artemisia annua L.). Phytochemistry. 95:215-223. https://doi.org/10.1016/j.phytochem.2013.06.026
- Shrivastava, P. and Kumar, R. 2015. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences. 22:123-131. https://doi.org/10.1016/j.sjbs.2014.12.001
- Tang, L., Kim, M.D., Yang, K.S., Kwon, S.Y., Kim, S.H., Kim, J.S., Yun, D.J., Kwak, S.S. and Lee H.S. 2008. Enhanced tolerance of transgenic potato plants overexpressing nucleoside diphosphate kinase 2 against multiple environmental stresses. Transgenic Research. 17:705-715. https://doi.org/10.1007/s11248-007-9155-2
- Vineis, P., Chan, Q. and Khan, A. 2011. Climate change impacts on water salinity and health. Journal of Epidemiology and Global Health. 1:5-10. https://doi.org/10.1016/j.jegh.2011.09.001
- Wang, Z.-Y. and Ge, Y. 2005. Agrobacterium-mediated high efficiency transformation of tall fescue (Festuca arundinacea). Journal of Plant Physiology. 162:103-113. https://doi.org/10.1016/j.jplph.2004.07.009
- Wang, Z., Li, H., Ke, Q., Jeong, J.C., Lee, H.-S., Xu, B., Deng, X.-P. Lim, Y.P. and Kwak, S.-S. 2014. Transgenic alfalfa plants expressing AtNDPK2 exhibit increased growth and tolerance to abiotic stresses. Plant Physiology and Biochemistry. 84:67-77. https://doi.org/10.1016/j.plaphy.2014.08.025
- Wu, G.T., Chen, J.Q., Hu, Z.H., Lang, C.X., Chen, X.Y., Wang, F.L., Jin, W. and Xia, Y.W. 2006. Production of transgenic tall fescue plants with enhanced stress tolerances by Agrobacterium tumefaciens-mediated transformation. Agricultural Sciences in China. 5:330-338. https://doi.org/10.1016/S1671-2927(06)60058-8
-
Wu Y.Y., Chen Q.J., Chen M., Chen J. and Wang X.C. 2005. Salt-tolerant transgenic perennial ryegrass (Lolium perenne L.) obtained by Agrobacterium tumefaciens-mediated transformation of the vacuolar Na+/
$H^+$ antiporter gene. Plant Science. 169:65-73. https://doi.org/10.1016/j.plantsci.2005.02.030 - Yang, K.A., Moon, H.J., Kim, G.T., Lim, C.J., Hong, J.C., Lim, C.O. and Yun D.J. 2003. NDP kinase 2 regulates expression of antioxidant genes in Arabidopsis. Proceedings of the Japan Academy Series B Physical and Biological Sciences. 79:86-91.
- Yuan, F., Leng, B. and Wang, B. 2016. Progress in studying salt secretion from the salt glands in recretohalophytes: How do plants secrete salt? Frontiers in Plant Science. 7: https://doi.org/10.3389/fpls.2016. 00977.
- Zhang H. X. and Blumwald, E. 2001. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nature Biotechnology. 19:765-768. https://doi.org/10.1038/90824
- Zhao, J., Zhi, D., Xue, Z., Liu, H. and Xia, G. 2007. Enhanced salt tolerance of transgenic progeny of tall fescue (Festuca arundinacea) expressing a vacuolar Na+/H^+ antiporter gene from Arabidopsis. Journal of Plant Physiology. 164:1377-1383. https://doi.org/10.1016/j.jplph.2007.04.001