References
- Ashton, P. M., 1992, Leaf adaptation of some Shorea species to sun and shade, New Phytol., 121, 587-596. https://doi.org/10.1111/j.1469-8137.1992.tb01130.x
- Atwell, B., Kriedmann, P., Turnbull, C., 1999, Plants in action, Macmillan Education Australia PTY Ltd., 650.
- Evans, R., Seeman, J. J., 1989, The allocation of protein nitrogen in the photosynthetic apparatus: Costs, consequences, and control, In: photosynthesis, Briggs, W. R. (ed.), Liss, New York, 183-205.
- Fahl, J. I., Carelli, L. C., Vega, J., Magalhaes, A. C., 1994, Nitrogen and irradiance levels affecting net photosynthis and growth of young coffee plants (Coffea arabica L.), J. Hot, Cul. Sci., 69, 161-169.
- Farquhar, G. D., Sharkey, T. D., 1985, Stomatal conductance and photosynthesis, Ann. Rev. Pl. Physiol., 33, 317-345.
- Fischer, R. A., Rees, D., Sayer, K. D., Lu, Z. M., Condon, A. G., Saavedra, A. L., 1997, Wheat yield progress associated with higher stomatal conductance and photosynthetic rate, and cooler canopies, Crop Sci., 38, 1467-1475.
- Givnish, T. J., 1988, Adaptation to sun and shadel a whole-plant perspective, Aust. J. Pl. Physiol., 15, 63-92. https://doi.org/10.1071/PP9880063
- Gonz, Z. R., Agueda, M., Domingo, M., Soledad, M. J., 2001, Gas exchange characteristics of a Canadian laurel forest tree species (Laurus Azorica) in relation to environmental conditions and leaf canopy position, Tree Physiol., 21(14), 1039-1045. https://doi.org/10.1093/treephys/21.14.1039
- Hikosaka, K., 2004, Intraspecific difference in the photosynthesis-nitrogen relationship: Patterns, physiological causes, and ecological importance, J. Plant Res., 117, 481-494. https://doi.org/10.1007/s10265-004-0174-2
- Ibanez, I., Clark, J. S., Dietze, M. C., 2008, Evaluating the sources of potential migrant species: Implications under climate change, Ecol. Appl., 18, 1664-1678. https://doi.org/10.1890/07-1594.1
- Iio, A., Fukasawa, H., Nose, Y., Koto, S., Kakubari, Y., 2005, Vertical, horizontal and azimuthal variations in leaf photosynthetic characteristics within a Fagus crenata crown in relation to light acclimation, Tree Physiol., 25, 533-544. https://doi.org/10.1093/treephys/25.5.533
- Kenzo, T., Ichie, T., Yoneda, R., Kitahashi, Y., Watanabe, Y., Ninomiya, I., Koike, T., 1988, Leaf structure and photosynthetic performance as related to the forest succession of deciduous broad-leaved trees, Pl. Species Biol., 3, 77-87. https://doi.org/10.1111/j.1442-1984.1988.tb00173.x
- Kim, J. W., 1992, Vegetation of northeast Asia, Ph D Dissertation of the University of Vienna, Austria.
- Koike, F., 1989, Foliage-crown development and interaction in Quercus Gilva and Q. Acuta, J. Ecol., 92-111.
- Koike, T., 2004, Interspecific variation of photosynthesis and leaf characteristics in five canopy trees of Dipterocarpaceae in a tropical rain forest, Tree Physiol., 24, 1187-1192. https://doi.org/10.1093/treephys/24.10.1187
- Korea Meteorological Administration, 2015, Annual climatological report, Korea Meteorological Administration, 138-140.
- Park, J. C., Yang, K. O., Jang, D. H., 2010, The movement of evergreen broad-leaved forest zone in the warm temperate region due to climate change in South Korea, J. Cli. Res., 5, 29-41.
- Peltier, D. M. P., Ines, I., 2015, Patterns and variability in seedling carbon assimilation: Implications for tree recruitment under climate change, Tree Physiol., 35(1), 71-85. https://doi.org/10.1093/treephys/tpu103
-
Pfanz, H., Vodnik, D., Wittmann, C., Aschan, G., Batic, F., Turk, B., Macek, I., 2007, Photosynthetic performance (
$CO_2$ -compensation point, carboxylation efficiency, and net photosynthesis) of timothy grass (Phleum Pratense L.) is affected by elevated carbon dioxide in post-volcanic mofette areas, Environ. Exp. Bot., 61 (1), 41-48. https://doi.org/10.1016/j.envexpbot.2007.02.008 - Porra, R. J., Thompson, P. E. K., 1989, Determination of accurate extinction coefficients and simultaneous equations of assaying chlorophylls a and b extracted with four different solvents: Verification of the concentration of chlorothyll standards by atomic absorption spectroscopy, Biochimica et Biophysica Acta, 975, 384-394. https://doi.org/10.1016/S0005-2728(89)80347-0
- Reich, P. B., Ellsworth, D. S., Walters, M. B., Vose, J. M., Gresham, C., Volin, J. C., Bowman, W. D., 1999, Generality of leaf trait relationships: A Test across six biomes, Ecol., 80, 1955-1969. https://doi.org/10.1890/0012-9658(1999)080[1955:GOLTRA]2.0.CO;2
- Takashima, T., Hikosaka, K., Hirose, T., 2004, Photosynthesis or persistence: Nitrogen allocation in leaves of evergreen and deciduous Quercus Species, Pl. Cell & Environ., 27(8), 1047-1054. https://doi.org/10.1111/j.1365-3040.2004.01209.x
- Von Caemmerer, S., Farquhar, G. D., 1981, Some relationships between the biochemistry of photosynthesis and the gas exchange of leavess, Planta, 153, 376-387. https://doi.org/10.1007/BF00384257
- Yasumura, Y., Hikosaka, K., Hirose, T., 2006, Seasonal changes in photosynthesis, nitrogen content and nitrogen partitioning in Lindera umbellate leaves grown in high or low irradiance, Tree Physiol., 26, 1315-1323. https://doi.org/10.1093/treephys/26.10.1315