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ORIGINAL ARTICLE

Filling in Water Temperature Data of Aquatic Environments using 
a Pre-constructed Relationship 

Khil-Ha Lee*

Department of Civil Engineering, Daegu University, Gyeongsan 38453, Korea

Abstract
In this study a method for filling in missing data of river water temperature using a pre-constructed mathematical 

relationship between air and water temperatures is presented. A regression between water temperatures at individual 
stations and ambient air temperatures at nearby weather stations can provide a practical method for representing 
missing water temperature data for an entire region. Air and water temperature data that were collected from two 
test sites (one coastal and, one inland) were individually fitted to a nonlinear regression model. To consider seasonal 
hysteresis effects, separate functions were fitted to the data in the rising and falling limbs. A single-criterion, 
multi-parameter optimization technique was used to determine the optimal parameter sets. This method minimizes the 
differences between the time series of the measured and estimated data. The constructed air-water temperature 
relationship was subsequently applied to represent missing water temperature data. It was found that the 
RMSEs(MBEs) were in the range of 1.843―1.976oC(-0.329―0.201oC) and the coefficient of determination were in 
the range of 0.92―0.96. The results demonstrate that the predicted water temperatures using the regression equations 
were reasonably accurate.
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1. Introduction1)

In most studies related to hydrologic research, 
missing data occur for several reasons, such as 
malfunctioning equipment and data collection and/or 
recording mechanisms, data entry errors, sensor 
failure, sensor replacement, and miscalibration. 
Missing data has the potential to substantially skew 
results (Schafer and Graham, 2002; Cole, 2008). 
Previous work has suggested that all researchers 
examine their data for missing data and address 
missing data in the most appropriate and desirable 
way to ensure high-quality results (Rubin, 1976; 

Cole, 2008; Osborne, 2013).
The topic of missing data has gained considerable 

attention in the last decade. However, several 
important misunderstandings remain regarding the 
problems that missing data can generate and 
acceptable solutions for addressing these data (Little 
and Rubin, 1987). 

Water temperature affects the Dissolved Oxygen 
(DO) levels in estuarine and river habitats because 
saturated DO is lowest at higher water temperatures, 
which often occur during summer (Lee and Lwiza, 
2007). Hence, water temperature is an important 
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Site Station Lat Lon TW avg 
( )

Ta avg 
( ) Period No. of 

samples

Test site A

Ansan 37.31 126.61 13.70 12.59 2002-2007 1364

Masan 35.20 128.58 16.48 15.54 2002-2007 1482

Nakdong 35.11 128.96 17.19 16.08 2004-2007 834

Test site B Bongwhang 35.94 127.49 15.30 15.19 2009-2011 703

Table 1. Summary of observed stations used for this study

factor for the quality of water resources and aquatic 
environment. Moreover, a change in water temperature 
results in a change in the water resources quality, 
especially the DO levels, which change the aquatic 
biota (Stefan and Sinokot, 1993; Pilgrim and Stefan, 
1995; Mohseni et al., 1998; Mohseni et al., 1999; 
Mohseni and Stefan, 1999; Mohseni et al, 2002; 
Struyf et al., 2004; Morril et al., 2005). The temporal 
trend in water temperatures varies according to the 
temporal variations in air temperature, which exhibits 
both seasonal and diurnal patterns. The effects of air 
temperature on water temperature have been 
previously reported; some efforts have been made to 
formulate air-water temperature relationships (Mohseni 
et al., 1998; Mohseni et al., 1999; Mohseni and 
Stefan, 1999; Mohseni et al., 2002; Morril et al., 
2005). Thus, a regression curve between water 
temperatures measured at individual stations and 
ambient air temperatures from nearby weather 
stations may provide a practical method to fill 
missing data. A time lag is often involved due to the 
delayed response of the water temperature due to the 
thermal inertia of water; however, a time lag is not 
necessary when using weekly averaged data (Stefan 
and Preud’ homme, 1993; Mohseni and Stefan, 
1999). This study examines the air-water temperature 
relationship on the basis of a logistic function in the 
Korean aquatic environment. The study assumes that 
air temperatures are related to water temperatures in 
order to represent the missing data. The air-water 
temperature data collected from four focused sites are 
individually fitted to a nonlinear regression model. 

Two sites are exposed to seasonal hysteresis; separate 
functions are fitted to the data in the rising and falling 
limbs to consider the seasonal hysteresis at this site. 

Once a relationship between air-water temperatures 
is constructed from recordings, the relationship is 
subsequently used to address the missing water 
temperature data. The study uses a single-criterion, 
multi-parameter optimization scheme to obtain an 
optimal parameter set in constructing the air-water 
relationship. 

2. Study region and data 

The Korea Institute of Ocean Science and 
Technology (KIOST) has focused on collecting air 
and water temperature data, meteorological data, and 
data regarding water quality at three estuarine sites: 
Ansan, Masan, and Nakdong (hereafter called test 
site A). Table 1 presents the study location and the 
weather data, which was averaged over the study 
period. The Ansan site, which has three individual 
stations, is situated within a closed territory that is 
surrounded by a sea wall; this site occasionally has 
contact with the ocean when the gate is open. The 
Masan site, which has two individual stations, is 
partially exposed to the ocean, whereas the Nakdong 
site is completely enclosed by a sea wall with no 
contact with the ocean because the sea wall prevents 
ocean intrusion. 

The meteorological data used in this study were 
from the period 2002-2007, consisting of carefully 
screened daily values. The air and water temperatures, 
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Fig. 1. Test site A (circles) and B (cross): Test site A (Ansan, Masan, and Nakdong) are in coastal zones, which represent 
both river and ocean systems. Test site B is in inland zones.

which were simultaneously collected by the KORDI 
at the same location, were obtained using a CTD 
sensor, OS-316. The water temperatures were measured 
at approximately 1 m below the water surface, while 
the air temperatures were measures at approximately 
2 m above the water surface. The measured data were 
averaged over 5-min intervals in this study. Fig. 1 
(circles) show the first test sites (coastal with three 
stations). The collected data from each meteorological 
station were previously checked for integrity, quality, 
and reasonableness according to different tests (Meek 
and Hatfield, 1994; Shafer et al., 2000; Schafer and 
Graham, 2002). Any observation that was beyond the 
allowable range was eliminated.

The Korea peninsula has a moderate climate 

characterized by distinct wet and dry seasons. The 
dry season coincides with a predominant northwesterly 
wind, which typically occurs from October to March. 
The wet season results from a predominant southeasterly 
wind, which transports moisture-laden air from the 
Pacific Ocean and lasts from May to October; 70% of 
the annual precipitation falls during this season. 
Moreover, July and August are usually the wettest 
months.

All sites exhibit typical daily and seasonal temper 
-ature variations. The seasonal maximum temperature 
typically occurs between May and October, while the 
minimum temperature occurs between November and 
April. Estuarine sites generally exhibit smaller 
temperature variations; the Diurnal Temperature 
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Range (DTR) is approximately 7 . 
A second location was tested to demonstrate the 

practicality and the universal applicability of the 
proposed method. While the first test site was located 
at a coastal area, an inland area was selected for the 
second test site (Fig. 1; cross). The water temperature 
data were provided by the National Institute of 
Environmental Research (NIER), Bongwhang, Korea 
(hereafter called test site B); the corresponding air 
data used in this study were collected by the Korea 
Meteorological Administration (KMA). The data 
used for this study were recorded between January 
2009 and December 2011 and consist of carefully 
screened daily values. The mean and standard deviation 
of the water temperature at the Bongwhang station 
are approximately 15.3 and 7.36 , respectively. 

Several factors may affect the relationship between 
air and water temperatures, including human use, 
current temperature, the air-water interface, and heat 
exchange (Stefan and Sinokot, 1993; Pilgrim and 
Stefan, 1995; Mohseni et al., 1998; Mohseni et al., 
1999; Mohseni and Stefan, 1999; Mohseni et al., 
2002; Morril et al., 2005). In the estuarine 
environment, such as the test sites in this study, an 
additional tidal effect from the ocean may occur with 
seasonal implications. There is no reservoir release 
upstream from the gauging station; however, some 
interaction with the groundwater inflow to the 
gauging station does occur.

3. Mathematical models

Regression approaches are advantageous because 
they often require only one climate variable, air 
temperature. However, some studies have concluded 
that a linear regression function is not sufficient for 
determining year-round water temperatures because 
the air-water temperature relationship does not 
typically remain linear for the highest and lowest air 
temperatures (Pilgrim and Stefan, 1995; Mohseni et 

al., 1998; Mohseni and Stefan, 1999). Alternatively, a 
nonlinear curve, called a logistic function, has been 
suggested for describing the nonlinear nature of the 
air-water temperature relationship. A logistic function 
is a common sigmoid function that is primarily used 
for population growth models (Richard, 1959; Pella 
and Tomlinson, 1969). Logistic functions are good 
models for biological population growth in species 
and marketing for the sales of new products (Lei and 
Zhang, 2004). The initial stage of growth follows an 
exponential curve before the growth slows down as 
saturation begins to occur. At the maturity stage, 
growth eventually stops. Every logistic curve has a 
single inflection point that separates the curve into 
two equal regions of opposite concavity (Lei and 
Zhang, 2004). This inflection point is called the point 
of diminishing returns (Richard, 1959; Pella and 
Tomlinson, 1969; Lei and Zhang, 2004); the 
derivative of the logistic function attains its 
maximum at the inflection point. The general form of 
a logistic function is as follows:


 






 )(1 aTw
e

T
                                            (1)

where Tw is the air temperature-dependent water 
temperature and Ta is the air temperature over the 
period of interest. Equation (1) has four parameters, 
(i.e.,   is the upper asymptote,   is the time of 
maximum growth;  is the growth rate, and ) is the 
lower asymptote. The parameters  ,  , , and  
represent the maximum water temperature, the air 
temperature at the inflection point, a function of the 
largest slope in the Tw function with respect to Ta, and 
the minimum water temperature, respectively. Hence 
  should be greater than . Fig. 2 presents a 
schematic plot for equation (1).   is about mid-point 
of maximum and minimum air temperature., and 
maximum and minimum air temperatures could be 
set for constraint. The slope in the Tw is not steep and 
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is usually less than 1~2, and  ≦  ≦  was used 
for this study. 

One of the most important issues in this modeling 
approach is to determine the model parameters, 
which strongly affect the accuracy of the model 
(Duan et al., 1993, 1994; Chau, 2007).  

Fig. 2. A Schematic plot for the logistic function. 

A single-criterion optimization technique was used 
to minimize the differences between the time series of 
measured and modeled water temperatures. Moreover, 
the feasibility of estimating the four parameters was 
also investigated. In general, a numerical model may 
have n parameters (in this case, the parameters describe 
the maximum water temperature, the minimum water 
temperature, the air-water temperature slope, and the 
air temperature at the inflection point) to be 
calibrated using m observations (in this case, the time 
series of measured water temperatures). The distance 
between the m model-simulated responses and the m 
observations is defined by an objective function (O), 
such as the Root-Mean-Square Error (RMSE), 
between the modeled responses and observations. 
The goal of the model calibration step is to determine 
the preferred value for the n parameters within the 
feasible set of parameters that minimize O. 

The Shuffled Complex Evolution algorithm (SCE, 
Duan et al., 1993, 1994) is a general-purpose global 
optimization method designed to handle many of the 
response problems encountered in the calibration of 

nonlinear simulation models. The algorithm randomly 
samples the feasible parameter space, which is 
prescribed to encompass only reasonable values in 
this study, to obtain a population of points. The 
population is subsequently partitioned into several 
“complexes”. Each complex evolves independently 
in a manner based on the downhill simplex algorithm 
(Nelder and Mead, 1965). Readers are referred to 
Duan et al. (1993, 1994) for more details on the 
numerical algorithm. 

4. Results

The data at each test site were divided into two 
groups. The first group was used for calibration, 
while the second group was used for validation 
(partially selected data). For the second group, 
approximately 20-30 points were randomly not 
included in the procedure to represent missing data in 
both the wet and dry seasons at each station. A 
relationship between air and water temperatures must 
be constructed before filling in the missing data. 
Therefore, the first group of data was used to 
determine the preferred parameter set using the 
single-criterion optimization technique that was 
discussed in the previous section. Moreover, patterns 
must be identified; the existence of a hysteresis must 
also be verified because a hysteresis may be involved 
in the air-water temperature relationship (Webb and 
Nobilis, 1997; Mohseni et al., 1998). To verify the 
existence of a hysteresis at each site, the rising and 
falling limbs were distinguished from each other. To 
separate the annual cycle into the rising and falling 
limbs, the week associated with the minimum mean 
weekly air temperature was regarded as the starting 
point of the rising limb (which also corresponds to 
the ending point of the falling limb), while the week 
associated with the maximum mean weekly air 
temperature was regarded as the ending point of the 
rising limb (which also corresponds to the starting 
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Station    

Test site A

Ansan 27.60 14.44 0.131 0.60

Masan (rising limb) 27.78 16.10 0.187 4.14

Masan (falling limb) 27.78 11.20 0.221 4.14

Nakdong 28.74 15.17 0.155 1.68

Test site B
Bongwhang (rising limb) 29.49 15.823 0.106 0.76

Bongwhang (falling limb) 29.49 10.133 0.132 0.76

Table 2. Preferred logistic function parameter sets for each site. The parameter sets are optimized using the SCE scheme

point of the falling limb). 

4.1. Validation of test site A

After checking for the existence of a hysteresis at 
the three locations, the Masan site was found to 
exhibit a noticeable hysteresis (Fig. 3). Table 2 
presents the preferred parameter set (i.e.,  ,  , , and 
 ) for each site. To quantify the efficiency of the fit, 
the Nash-Sutcliffe Coefficient of efficiency (NSC) 
(Nash and Sutcliffe, 1970) was used. The normal 
distribution of the error structure was assumed to 
determine the confidence intervals of the regression 
model. The results show that the NSCs for the Ansan 
and Nakdong sites are 0.917 and 0.967, respectively, 
for the calibration process. All the sites show some 
local biases. The RMSEs(MBEs) for the Ansan and 
Nakdong sites are 1.826 (-0.227 ) and 1.388
(0.188 ), respectively. For the Masan site, the NSCs 
for the rising and falling limbs are 0.901 and 0.929, 
respectively, while the RMSEs(MBEs) for the rising 
and falling limbs are 1.918 (-0.136 ) and 1.765
(-0.125 ), respectively. There is an indication that 
the falling limb is slightly better fitted than the rising 
limb. The estimated water temperatures using the 
logistic air-water temperature relationship exhibit 
reasonable accuracy at each site. 

The second group is used to examine the accuracy 
and performance of the suggested method for the 
validation process. Comparisons between measured 
and estimated water temperatures using equation (1) 
at the three stations are presented in Fig. 4-5. The 

RMSEs(MBEs) for the Ansan and Nakdong sites are 
1.962 (-0.220 ) and 1.425 (-0.132 ), respectively. 
For the Masan site, the RMSEs(MBEs) for the 
rising and falling limbs are 1.976 (-0.329 ) and 
1.863 (-0.308 ), respectively. The coefficients of 
determination are 0.92, 0.93, and 0.96 for the Ansan, 
Masan, and Nakdong stations, respectively. 

Fig. 3. Weekly mean water temperatures in the Masan 
station during the year of 2005. Separate warming 
and cooling season track account for hysteresis in 
the dataset. The numbers indicate the week of the 
year. 

4.2. Validation of test site B

Test site B also exhibits a hysteresis; the preferred 
parameter sets for each site are presented in Table 2. 
The NSCs for the rising and falling limbs are 0.925 
and 0.940, respectively, while the RMSEs for the 
rising and falling limbs are 1.924 and 1.717, 
respectively. The general trend is similar to the trend 
observed at test site A. Using the same method 
described for test site A, the second group is used to 
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Fig. 4. Fitted water temperatures against the observed water 
temperatures. The preferred parameter set are shown 
in Fig. 4(a-c): a) the Masan site, b) the Ansan site, 
and c) the Nakdong site. The values on the left in 
Fig. 5(a) are for the rising limb, while the values on 
the right in Fig. 5(a) are for the falling limb.

Fig. 5. A scatter plot of estimated versus measured missing 
water temperature data using the logistic air-water 
temperature relationship; (a) Ansan station, (b) 
Masan station, and (c) Nakdong station.

examine the accuracy and performance of the 
suggested method for the validation process. 
Comparisons between the measured water temperatures 
and those estimated using equation (1) at site B are 
presented in Fig. 6(b). The RMSE(MBE) and the 
coefficient of determination are 1.843 (0.201 ) and 
0.94, respectively, for the validation station. 

As a whole, the RMSEs and MBEs are within 
acceptable accuracy, and the coefficient of determination 
is excellent with over 0.9. Very large errors are 
unlikely to occur in estimation. In general, the 
logistic air-water temperature relationship provides a 
reasonable method for handling missing water 
temperature data.    

5. Summary and conclusions 

Air and water temperature data collected from 
three focused sites are individually fitted to a 
nonlinear regression model to handle missing data. 
First, a single-criterion optimization technique is used 
to determine the four parameters of the logistic 
function, which are used to adequately reflect the 
characteristics of local climate and to minimize the 
differences between the measured and modeled water 
temperature time series. Subsequently, the calibrated 
model is used to fill in missing water temperature 
data. Finally, the estimated water temperatures using 
the logistic air-water temperature relationship are 
compared to those measured in the field. The primary 
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Fig. 6. (a) Fitted water temperatures against the observed water temperatures. (b) A scatter plot of estimated versus 
measured missing water temperature data using the logistic air-water temperature relationship.

conclusions are as follows:
The SCE optimization scheme provides reasonable 

estimates of the logistic function parameters for the 
air-water temperature relationship.

The Masan site and test site B exhibit a noticeable 
seasonal hysteresis; therefore, separate functions 
must be fitted.

The RMSEs(MBEs) for the Ansan, Nakdong, 
and Bongwhang sites are 1.962 (-0.220 ), 1.425
(-0.132 ), and 1.843 (0.201 ), respectively. The 
RMSEs(MBEs) of the rising and falling limbs for the 
Masan station are 1.976 (-0.329 ) and 1.863
(-0.308 ), respectively. 

There are some local biases but the estimated 
water temperatures using the logistic air-water 
relationship are shown to be reasonably accurate for 
representing missing water temperature data.

The results from this study show that the logistic 
air-water temperature relationship is very effective 
for predicting water temperatures with respect to 
ambient air temperatures in an aquatic environment. 
This study provides a simple method to handle 
missing water temperature data that may be difficult 
to address in practice. Unfortunately very limited 
field measurement may limit the degree of validation 

of the suggested model. To collect a reliable database 
from more regions and conduct general validation 
would be desirable and beneficial.
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