DOI QR코드

DOI QR Code

Energy-controlled Micro Electrical Discharge Machining for an Al2O3-carbon Nanotube Composite

  • Ha, Chang-seung (Dept. of Electrical Engineering, Pusan National University) ;
  • Son, Eui-Jeong (Dept. of Electrical Engineering, Pusan National University) ;
  • Cha, Ju-Hong (Dept. of Electrical Engineering, Pusan National University) ;
  • Kang, Myung Chang (Dept. of Convergence Science, Pusan National University) ;
  • Lee, Ho-Jun (Dept. of Electrical Engineering, Pusan National University)
  • Received : 2017.02.13
  • Accepted : 2017.08.01
  • Published : 2017.11.01

Abstract

Carbon nanotube (CNT) and alumina ($Al_2O_3$) are synthesized into hybrid composites, and an advanced electrical discharge machining (EDM) system is developed for the machining of hard and conductive materials. CNT nanoparticles are mixed with $Al_2O_3$ powder and the $Al_2O_3$/CNT slurry is sintered by spark plasma. The hardness and the electrical conductivity of the $Al_2O_3$/CNT hybrid composite were investigated. The electrical discharge is controlled by a capacitive ballast circuit. The capacitive ballast circuit is applied to the tungsten carbide and the $Al_2O_3$/CNT hybrid composite. The voltage-current waveforms and scanning electron microscope (SEM) images were measured to analyze the characteristics of the boring process. The developed EDM process can manufacture the ceramic based hybrid composites, thereby expecting the variety of applications.

Keywords

References

  1. El-Hofy, H., Advanced Machining Processes, McGraw-Hill, New York, pp.116-118, 2005.
  2. Graham, W.G., Stalder, K.R., "Plasmas in liquids and some of their applications in nanoscience" J. Phys. D: Appl. Phys. vol. 44, no. 17, pp. 174037, Apr. 2011. https://doi.org/10.1088/0022-3727/44/17/174037
  3. Garcia, L.F., Suarez M., Menendez J.L., Pecharroman C., Nuzhnyy D., Bovtun V., Savinov M., Kempa M., Petzelt J., Dielectric properties of carbon nanofiber / alumina composites," Carbon, pp. 380-387, 2013.
  4. J. G. Ok, B. H. Kim, W. Y. Sung, C. N. Chu, and Y. H. Kim, "Uniformity enhancement of carbon nanofiber emitters via electrical discharge machining" Appl. Phys. Lett. vol. 90, no. 3, pp. 033117, Jan. 2007. https://doi.org/10.1063/1.2432239
  5. P. Pecas and E. Henriques, "Effect of the powder concentration and dielectric flow in the surface morphology in electrical discharge machining with powder-mixed dielectric (PMD-EDM)", Int. J. Adv. Manuf. Technol. vol. 37, no. 11, pp. 1120-1132, Jul. 2008. https://doi.org/10.1007/s00170-007-1061-5
  6. K. Y. Song, D. K. Chung, M. S. Park, and C. N. Chu, "Micro electrical discharge drilling of tungsten carbide using deionized water," J. Micromech. Microeng. vol. 19, no. 4, pp. 045006, Mar. 2009. https://doi.org/10.1088/0960-1317/19/4/045006
  7. P. Weber, S. Haupt, and V. Schulze, "Hybrid machining of microstructures using a combination of electrical discharge machining milling and laser ablation" J. Vac. Sci. Technol. B vol. 27, no. 3, pp. 1327-1329, Jun. 2009. https://doi.org/10.1116/1.3086652
  8. M. Kunieda, B. Lauwers, K. P. Rajurkar, and B. M. Schumacher, "Advancing EDM through Fundamental Insight into the Process," Annals of CIRP, vol. 54, no. 2, pp. 64-87, 2005. https://doi.org/10.1016/S0007-8506(07)60020-1
  9. F. Han, S. Wachi, and M. Kunieda, "Improvement of machining characteristics of micro-EDM using transistor type isopulse generator and servo feed control," Precis. Eng. vol. 28, no. 4, pp. 378-385, Oct. 2004. https://doi.org/10.1016/j.precisioneng.2003.11.005
  10. H. S. Tak, C. S. Ha, D. H. Kim, H. J. Lee, H. J. Lee, M. C. Kang, "Comparative study on discharge conditions in micro-hole electrical discharge machining of tungsten carbide (WC-Co) material," Trans. Nonferrous Met. Soc. China, vol. 19, no. 1, pp. s114-s118, Sep. 2009. https://doi.org/10.1016/S1003-6326(10)60257-9
  11. R. L. Lin, C. C. Hsu, and S. K. Changchien, "Interleaved Four-Phase Buck-Based Current Source With Isolated Energy-Recovery Scheme for Electrical Discharge Machining" IEEE Trans. Power Electron. vol. 24, no. 7, pp. 1788-1797, July. 2009. https://doi.org/10.1109/TPEL.2009.2025828
  12. C. S. Ha, J. Y. Choi, H. J. Lee, D. H. Kim, and H. J. Lee, "Images of Nanosecond Pulse-Driven Low Temperature Atmospheric Pressure Plasma Using Dielectric-Free Parallel Electrodes" IEEE Trans. Plasma Sci. vol. 36, no. 4, pp. 970-971, Aug. 2008. https://doi.org/10.1109/TPS.2008.924267
  13. C. S. Ha, J. Y. Choi, D. H. Kim, C. H. Park, H. J. Lee, and H. J. Lee, ". Properties of dielectric-barrier-free atmospheric pressure microplasma driven by submicrosecond dc pulse voltage" Appl. Phys. Lett. vol. 95, no. 6, pp. 061502, July. 2009. https://doi.org/10.1063/1.3194298
  14. C. S. Ha, D. H. Kim, H. J. Lee, and H. J. Lee, "Discharge Images of a Dielectric-Barrier-Free Atmospheric-Pressure Microplasma Controlled by an External Ballast Capacitor," IEEE Trans. Plasma Sci. vol. 39, no. 11, pp. 2378-2379, Nov. 2011. https://doi.org/10.1109/TPS.2011.2161596
  15. S. I. Cha, K. T. Kim, K. H. Lee, C. B. Mo, Y. J. Jeong, and S. H. Hong, "Mechanical and electrical properties of cross-linked carbon nanotubes," Carbon, vol. 46, no. 3, pp. 482-488, Mar. 2008. https://doi.org/10.1016/j.carbon.2007.12.023
  16. J. Echeberria, N. Rodriguez, J. Vleugels, K. Vanmeensel, A. Reyes-Rojas, A. Garcia-Reyes, C. Dominguez-Rios, A. Aguilar-Elguezabal, and M. H. Bocanegra-Bernal, "Hard and tough carbon nanotubereinforced zirconia-toughened alumina composites prepared by spark plasma sintering," Carbon, vol. 50, no. 2, pp. 706-717, Feb. 2012. https://doi.org/10.1016/j.carbon.2011.09.031
  17. H. S. Tak, C. S. Ha, H. J. Lee, H. W. Lee, Y. K. Jeong, and M. C. Kang, "Characteristic evaluation of $Al_2O_3$/CNTs hybrid materials for micro-electrical discharge machining," Trans. Nonferrous Met. Soc. China, vol. 21, no. 14, pp. s28-s32, Mar. 2011. https://doi.org/10.1016/S1003-6326(11)61055-8
  18. K. Albinski, K. Musiol, A. Miernikiewicz, S. Labuz, and M. Malota, "The temperature of a plasma used in electrical discharge machining," Plasma Sources Sci. Technol. vol . 5, no. 4, pp. 736-742, 1996. https://doi.org/10.1088/0963-0252/5/4/015
  19. Y. S. Liao, S. T. Chen, and C. S. Lin, J. "Development of a high precision tabletop versatile CNC wire-EDM for making intricate micro parts," Micromech. Microeng. vol. 15, no. 2, pp. 245-253, 2005. https://doi.org/10.1088/0960-1317/15/2/001
  20. K. H. Ho and S. T. Newman, "State of the art electrical discharge machining (EDM)," Int. J. Mach. Tool. Manu, vol. 43, no. 13, pp. 1287-1300, Oct. 2003. https://doi.org/10.1016/S0890-6955(03)00162-7
  21. D. K. Chung, B. H. Kim, and C. N. Chu, "Micro electrical discharge milling using deionized water as a dielectric fluid," J. Micromech. Microeng, vol. 17, no. 5, pp. 867-874, Mar. 2007. https://doi.org/10.1088/0960-1317/17/5/004
  22. M. L. Jeswani, "Effect of The Addition of Graphite Powder to Kerosene Used as the dielectric fluid in electrical discharge machining," Wear, vol. 70, no. 2, pp. 133-13, Aug. 1981. https://doi.org/10.1016/0043-1648(81)90148-4
  23. Y. S. Wong, M. Rahman, H. S. Lim, H. Han, and N. Ravi, "Investigation of micro-EDM material removal characteristics using single RC-pulse discharges," J. Mater. Process.Technol. vol. 140, no. 1-3, pp. 303-307, Sep. 2003. https://doi.org/10.1016/S0924-0136(03)00771-4
  24. A. R. Hefner, "An Investigation of the Drive Circuit Requirements for the Power Insulated Gate Bipolar Transistor (IGBT)," IEEE Trans. Power Electron, vol. 6, no. 2, pp. 208-219, Apr. 1991.
  25. M. P. Jahan, Y. S. Wong, and M. Rahman, "A study on the quality micro-hole machining of tungsten carbide by micro-EDM process using transistor and RC-type pulse generator," J. Mater. Proc. Technol, vol. 209, no. 4, pp. 1706-1716, Feb. 2009. https://doi.org/10.1016/j.jmatprotec.2008.04.029