DOI QR코드

DOI QR Code

Specific Expression of Interferon-γ Induced by Synergistic Activation Mediator-Derived Systems Activates Innate Immunity and Inhibits Tumorigenesis

  • Liu, Shuai (School of Basic Medical Sciences, Wuhan University) ;
  • Yu, Xiao (Institute for Infectious Disease Control and Prevention, Hubei Provincial Center for Disease Control and Prevention) ;
  • Wang, Qiankun (School of Basic Medical Sciences, Wuhan University) ;
  • Liu, Zhepeng (School of Basic Medical Sciences, Wuhan University) ;
  • Xiao, Qiaoqiao (School of Basic Medical Sciences, Wuhan University) ;
  • Hou, Panpan (College of Life Sciences, Wuhan University) ;
  • Hu, Ying (College of Life Sciences, Wuhan University) ;
  • Hou, Wei (School of Basic Medical Sciences, Wuhan University) ;
  • Yang, Zhanqiu (School of Basic Medical Sciences, Wuhan University) ;
  • Guo, Deyin (School of Basic Medical Sciences, Wuhan University) ;
  • Chen, Shuliang (School of Basic Medical Sciences, Wuhan University)
  • 투고 : 2017.05.31
  • 심사 : 2017.08.23
  • 발행 : 2017.10.28

초록

The synergistic activation mediator (SAM) system can robustly activate endogenous gene expression by a single-guide RNA. This transcriptional modulation has been shown to enhance gene promoter activity and leads to epigenetic changes. Human $interferon-{\gamma}$ is a common natural glycoprotein involved in antiviral effects and inhibition of cancer cell growth. Large quantities of high-purity $interferon-{\gamma}$ are important for medical research and clinical therapy. To investigate the possibility of employing the SAM system to enhance endogenous human $interferon-{\gamma}$ with normal function in innate immunity, we designed 10 single-guide RNAs that target 200 bp upstream of the transcription start sites of the $interferon-{\gamma}$ genome, which could significantly activate the $interferon-{\gamma}$ promoter reporter. We confirmed that the system can effectively and highly activate $interferon-{\gamma}$ expression in several humanized cell lines. Moreover, we found that the $interferon-{\gamma}$ induced by the SAM system could inhibit tumorigenesis. Taken together, our results reveal that the SAM system can modulate epigenetic traits of non-immune cells through activating $interferon-{\gamma}$ expression and triggering JAK-STAT signaling pathways. Thus, this strategy could offer a novel approach to inhibit tumorigenesis without using exogenous $interferon-{\gamma}$.

키워드

참고문헌

  1. Nandre RM, Jawale CV, Lee JH. 2013. Enhanced protective immune responses against Salmonella Enteritidis infection by Salmonella secreting an Escherichia coli heat-labile enterotoxin B subunit protein. Comp. Immunol. Microbiol. Infect. Dis. 36: 537-548. https://doi.org/10.1016/j.cimid.2013.06.002
  2. Sadler AJ, Williams BR. 2008. Interferon-inducible antiviral effectors. Nat. Rev. Immunol. 8: 559-568. https://doi.org/10.1038/nri2314
  3. Giroux M, Schmidt M, Descoteaux A. 2003. IFN-gammainduced MHC class II expression: transactivation of class II transactivator promoter IV by IFN regulatory factor-1 is regulated by protein kinase C-alpha. J. Immunol. 171: 4187-4194. https://doi.org/10.4049/jimmunol.171.8.4187
  4. Zaidi MR, Merlino G. 2011. The two faces of interferongamma in cancer. Clin. Cancer Res. 17: 6118-6124. https://doi.org/10.1158/1078-0432.CCR-11-0482
  5. Mohammadian-Mosaabadi J, Naderi-Manesh H, Maghsoudi N, Nassiri-Khalili MA, Masoumian MR, Malek-Sabet N. 2007. Improving purification of recombinant human interferon gamma expressed in Escherichia coli; effect of removal of impurity on the process yield. Protein Expr. Purif. 51: 147-156. https://doi.org/10.1016/j.pep.2006.07.002
  6. Arakawa T, Hsu YR, Yphantis DA. 1987. Acid unfolding and self-association of recombinant Escherichia coli derived human interferon-gamma. Biochemistry 26: 5428-5432. https://doi.org/10.1021/bi00391a032
  7. Fieschko JC, Egan KM, Ritch T, Koski RA, Jones M, Bitter GA. 1987. Controlled expression and purification of human immune interferon from high-cell-density fermentations of Saccharomyces cerevisiae. Biotechnol. Bioeng. 29: 1113-1121. https://doi.org/10.1002/bit.260290911
  8. Ghosalkar A, Sahai V, Srivastava A. 2008. Secretory expression of interferon-alpha 2b in recombinant Pichia pastoris using three different secretion signals. Protein Expr. Purif. 60: 103-109. https://doi.org/10.1016/j.pep.2008.02.006
  9. Chen YJ, Chen WS, Wu TY. 2005. Development of a bicistronic baculovirus expression vector by the Rhopalosiphum padi virus 5' internal ribosome entry site. Biochem. Biophys. Res. Commun. 335: 616-623. https://doi.org/10.1016/j.bbrc.2005.07.116
  10. Tan HK, Lee MM, Yap MG, Wang DI. 2008. Overexpression of cold-inducible RNA-binding protein increases interferongamma production in Chinese-hamster ovary cells. Biotechnol. Appl. Biochem. 49: 247-257. https://doi.org/10.1042/BA20070032
  11. Reddy PK, Reddy SG, Narala VR, Majee SS, Konda S, Gunwar S, et al. 2007. Increased yield of high purity recombinant human interferon-gamma utilizing reversed phase column chromatography. Protein Expr. Purif. 52: 123-130. https://doi.org/10.1016/j.pep.2006.08.013
  12. Petrov S, Nacheva G, Ivanov I. 2010. Purification and refolding of recombinant human interferon-gamma in ureaammonium chloride solution. Protein Expr. Purif. 73: 70-73. https://doi.org/10.1016/j.pep.2010.03.026
  13. Chin YE, Kitagawa M, Su W-C, You Z-H. 1996. Cell growth arrest and induction of cyclin-dependent kinase inhibitor p21WAF1/CIP1 mediated by STAT1. Science 272: 719-722. https://doi.org/10.1126/science.272.5262.719
  14. Chawla-Sarkar M, Lindner D, Liu Y-F, Williams B, Sen G, Silverman R, et al. 2003. Apoptosis and interferons: role of interferon-stimulated genes as mediators of apoptosis. Apoptosis 8: 237-249. https://doi.org/10.1023/A:1023668705040
  15. Falahi F, Sgro A, Blancafort P. 2015. Epigenome engineering in cancer: fairytale or a realistic path to the clinic? Front. Oncol. 5: 22.
  16. Doudna JA, Charpentier E. 2014. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346: 1258096. https://doi.org/10.1126/science.1258096
  17. Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, et al. 2015. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517: 583-588. https://doi.org/10.1038/nature14136
  18. Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD. 2014. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159: 635-646. https://doi.org/10.1016/j.cell.2014.09.039
  19. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, et al. 2013. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152: 1173-1183. https://doi.org/10.1016/j.cell.2013.02.022
  20. Shalem O, Sanjana NE, Zhang F. 2015. High-throughput functional genomics using CRISPR-Cas9. Nat. Rev. Genet. 16: 299-311.
  21. van Essen D, Engist B, Natoli G, Saccani S. 2009. Two modes of transcriptional activation at native promoters by NF-${\kappa}B$ p65. PLoS Biol. 7: e1000073. https://doi.org/10.1371/journal.pbio.1000073
  22. Marinho HS, Real C, Cyrne L, Soares H, Antunes F. 2014. Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol. 2: 535-562. https://doi.org/10.1016/j.redox.2014.02.006
  23. Naldini L. 2015. Gene therapy returns to centre stage. Nature 526: 351-360. https://doi.org/10.1038/nature15818
  24. Hou P, Chen S, Wang S, Yu X, Chen Y, Jiang M, et al. 2015. Genome editing of CXCR4 by CRISPR/Cas9 confers cells resistant to HIV-1 infection. Sci. Rep. 5: 15577. https://doi.org/10.1038/srep15577
  25. Paulus C, Krauss S, Nevels M. 2006. A human cytomegalovirus antagonist of type I IFN-dependent signal transducer and activator of transcription signaling. Proc. Natl. Acad. S ci. USA 103: 3840-3845. https://doi.org/10.1073/pnas.0600007103
  26. Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, et al. 2013. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 31: 833-838. https://doi.org/10.1038/nbt.2675
  27. Platanias LC. 2005. Mechanisms of type-I- and type-IIinterferon-mediated signalling. Nat. Rev. Immunol. 5: 375-386. https://doi.org/10.1038/nri1604
  28. Schindler C, Levy DE, Decker T. 2007. JAK-STAT signaling: from interferons to cytokines. J. Biol. Chem. 282: 20059-20063. https://doi.org/10.1074/jbc.R700016200
  29. Rosowski EE, Nguyen QP, Camejo A, Spooner E, Saeij JP. 2014. Toxoplasma gondii inhibits gamma interferon (IFN-$\gamma$)-and IFN-${\beta}$-induced host cell STAT1 transcriptional activity by increasing the association of STAT1 with DNA. Infect. Immun. 82: 706-719. https://doi.org/10.1128/IAI.01291-13
  30. Lu X, Jin X, Huang Y, Wang J, Shen J, Chu F, et al. 2014. Construction of a novel liver-targeting fusion interferon by incorporation of a Plasmodium region I-plus peptide. Biomed. Res. Int. 2014: 261631.
  31. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS, et al. 2014. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343: 84-87. https://doi.org/10.1126/science.1247005
  32. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, et al. 2013. DNA targeting specificity of RNAguided Cas9 nucleases. Nat. Biotechnol. 31: 827-832. https://doi.org/10.1038/nbt.2647
  33. Friesel R, Komoriya A, Maciag T. 1987. Inhibition of endothelial cell proliferation by gamma-interferon. J . Cell Biol. 104: 689-696. https://doi.org/10.1083/jcb.104.3.689
  34. Sedger LM, Shows DM, Blanton RA, Peschon JJ, Goodwin RG, Cosman D, et al. 1999. IFN-$\gamma$ mediates a novel antiviral activity through dynamic modulation of TRAIL and TRAIL receptor expression. J. Immunol. 163: 920-926.
  35. Subramaniam PS, Larkin J 3rd, Mujtaba MG, Walter MR, Johnson HM. 2000. The COOH-terminal nuclear localization sequence of interferon gamma regulates STAT1 alpha nuclear translocation at an intracellular site. J. Cell Sci. 113: 2771-2781.
  36. Rodel F, Franz S, Sheriff A, Gaipl U, Heyder P, Hildebrandt G, et al. 2005. The CFSE distribution assay is a powerful technique for the analysis of radiation-induced cell death and survival on a single-cell level. Strahlenther. Onkol. 181: 456-462. https://doi.org/10.1007/s00066-005-1361-3
  37. Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA. 2013. Programmable repression and activation of bacterial gene expression using an engineered CRISPRCas system. Nucleic Acids Res. 41: 7429-7437. https://doi.org/10.1093/nar/gkt520
  38. Ji H, Jiang Z, Lu P, Ma L, Li C, Pan H, et al. 2016. Specific reactivation of latent HIV-1 by dCas9-SunTag-VP64-mediated guide RNA targeting the HIV-1 promoter. Mol. Ther. 24: 508-521. https://doi.org/10.1038/mt.2016.7
  39. Choudhury SR, Cui Y, Lubecka K, Stefanska B, Irudayaraj J. 2016. CRISPR-dCas9 mediated TET1 targeting for selective DNA demethylation at BRCA1 promoter. Oncotarget 7: 46545-46556.
  40. Kay MA, Glorioso JC, Naldini L. 2001. Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat. Med. 7: 33-40. https://doi.org/10.1038/83324

피인용 문헌

  1. Middle East Respiratory Syndrome Coronavirus-Encoded ORF8b Inhibits RIG-I-Like Receptors by a Differential Mechanism vol.29, pp.12, 2017, https://doi.org/10.4014/jmb.1911.11024
  2. Reprogramming the anti-tumor immune response via CRISPR genetic and epigenetic editing vol.21, pp.None, 2017, https://doi.org/10.1016/j.omtm.2021.04.009