References
- Kawaguchi A, Inoue K, Inoue Y. 2014. Biological control of bacterial spot on peach by nonpathogenic Xanthomonas campestris strains AZ98101 and AZ98106. J. Gen. Plant Pathol. 80: 158-163. https://doi.org/10.1007/s10327-014-0506-6
- Stefani E. 2010. Economic significance and control of bacterial spot/canker of stone fruits caused by Xanthomonas arboricola pv. pruni. J. Plant Pathol. 92: S1.99-S1.103.
- Wallis FM, Truter SJ. 1978. Histopathology of tomato plants infected with Pseudomonas solanacearum with emphasis on ultrastructure. Physiol. Plant Pathol. 13: 307-310. https://doi.org/10.1016/0048-4059(78)90047-4
- Genin S, Boucher C. 2004. Lessons learned from the genome analysis of Ralstonia solanacearum. Annu. Rev. Phytopathol. 42: 107-134. https://doi.org/10.1146/annurev.phyto.42.011204.104301
- Hayward AC. 1991. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu. Rev. Phytopathol. 29: 65-87. https://doi.org/10.1146/annurev.py.29.090191.000433
- Vu TT, Kim J-C, Choi YH, Choi GJ, Jang KS, Choi TH, et al. 2013. Effect of gallotannins derived from Sedum takesimense on tomato bacterial wilt. Plant Dis. 97: 1593-1598. https://doi.org/10.1094/PDIS-04-13-0350-RE
- Yoon MY, Cha BG, Kim J-C. 2013. Recent trends in studies on botanical fungicides in agriculture.Plant Pathol. J. 29: 1-9. https://doi.org/10.5423/PPJ.RW.05.2012.0072
- Le Dang Q, Shin TS, Park MS, Choi YH, Choi GJ, Jang KS, et al. 2014. Antimicrobial activities of novel mannosyl lipids isolated from the biocontrol fungus Simplicillium lamellicola BCP against phytopathogenic bacteria. J. Agric. Food Chem. 62: 3363-3370. https://doi.org/10.1021/jf500361e
- Nguyen HT, Yu NH, Jeon SJ, Lee HW, Bae CH, Yeo JH, et al. 2016. Antibacterial activities of penicillic acid isolated from Aspergillus persii against various plant pathogenic bacteria. Lett. Appl. Microbiol. 62: 488-493. https://doi.org/10.1111/lam.12578
- Austin DF, Huaman Z. 1996. A synopsis of Ipomoea (Convolvulaceae) in the Americas. Taxon 29: 501-502.
- Miller RE, Rausher MD, Manos PS. 1999. Phylogenetic systematics of Ipomoea (Convolvulaceae) based on ITS and waxy sequences. Syst. Bot. 24: 209-227. https://doi.org/10.2307/2419549
- Kim KH, Ha SK, Choi SU, Kim SY, Lee KR. 2011. Bioactive phenolic constituents from the seeds of Pharbitis nil. Chem. Pharm. Bull. 59: 1425-1429. https://doi.org/10.1248/cpb.59.1425
- Corona-Castaneda B, Pereda-Miranda R. 2012. Morning glory resin glycosides as modulators of antibiotic activity in multidrug-resistant gram-negative bacteria. Planta Med. 78: 128-131. https://doi.org/10.1055/s-0031-1280292
- Kawasaki T, Okabe H, Nakatsuka I. 1971. Studies on resin glycosides. I. Reinvestigation of the components of pharbitin, a resin glycoside of the seeds of Pharbitis nil Choisy. Chem. Pharm. Bull. 19: 2394-2403. https://doi.org/10.1248/cpb.19.2394
- Kim KH, Choi SU, Lee KR. 2009. Diterpene glycosides from the seeds of Pharbitis nil. J. Nat. Prod. 72: 1121-1127. https://doi.org/10.1021/np900101t
- Lee OS, Lee B, Park N, Koo JC, Kim YH, Prasad DT, et al. 2003. Pn-AMPs, the hevein-like proteins from Pharbitis nil confers disease resistance against phytopathogenic fungi in tomato, Lycopersicum esculentum. Phytochemistry 62: 1073-1079. https://doi.org/10.1016/S0031-9422(02)00668-4
- MacLeod JK, Ward A. 1997. Structural investigation of resin glycosides from Ipomoea lonchophylla. J. Nat. Prod. 60: 467-471. https://doi.org/10.1021/np960693q
- Bensky D, Gamble A. 1993. Chinese Herbasl Medicine, Revised Ed. Materia Media, Eastland Press, Seattle.
- Eich E. 2008. Solanaceae and Convolvulaceae: Secondary Metabolites, Springer Verlag, Berlin Heidelberg.
- Okabe H, Kawasaki T. 1970. Structures of pharbitic acids C and D. Tetrahedron Lett. 36: 3123-3126.
- Lee TH, Choi JJ, Kim DH, Choi S, Lee KR, Son M, et al. 2008. Gastroprokinetic effects of DA-9701, a new prokinetic agent formulated with Pharbitis Semen and Corydalis Tuber. Phytomedicine 15: 836-843. https://doi.org/10.1016/j.phymed.2008.02.019
- Kim KH, Choi SU, Son MW, Lee KR. 2010. Two new phenolic amides from the seeds of Pharbitis nil. Chem. Pharm. Bull. 58: 1532-1535. https://doi.org/10.1248/cpb.58.1532
- Koo JC, Lee SY, Chun HJ, Cheong YH, Choi JS, Kawabata S-I, et al. 1998. Two hevein homologs isolated from the seeds of Pharbitis nil L. exhibit potent antifungal activity. Biochim. Biophys. Acta 1382: 80-90. https://doi.org/10.1016/S0167-4838(97)00148-9
- Koo JC, Chun HJ, Park HC, Kim MC, Koo YD, Koo SC, et al. 2002. Over-expression of a seed specific hevein-like antimicrobial peptide from Pharbitis nil enhances resistance to a fungal pathogen in transgenic tobacco plants. Plant Mol. Biol. 50: 441-452. https://doi.org/10.1023/A:1019864222515
- Ko SG, Koh SH, Jun CY, Nam CG, Bae HS, Shin MK. 2004. Induction of apoptosis by Saussurea lappa and Pharbitis nil on AGS gastric cancer cells. Biol. Pharm. Bull. 27: 1604-1610. https://doi.org/10.1248/bpb.27.1604
- Hao B, Liu GL, Hu XG, Wang GX. 2012. Bioassay-guided isolation and identification of active compounds from Semen pharbitidis against Dactylogyrus intermedius (Monogenea) in goldfish (Carassius auratus). Vet. Parasitol. 187: 452-458. https://doi.org/10.1016/j.vetpar.2012.01.023
- Lee HJ, Jo EJ, Kim NH, Chae Y, Lee S-W. 2011. Disease responses of tomato pure lines against Ralstonia solanacearum strains from Korea and susceptibility at high temperature. Res. Plant Dis. 17: 326-333. https://doi.org/10.5423/RPD.2011.17.3.326
- Koh YJ, Kim GH, Jung JS, Lee YS, Hur JS. 2010. Outbreak of bacterial canker on Hort16A (Actinidia chinensis Planchon) caused by Pseudomonas syringae pv. actinidiae in Korea. N. Z. J. Crop Hort. Sci. 38: 275-282. https://doi.org/10.1080/01140671.2010.512624
- Ono M, Takigawa A, Mineno T, Yoshimitu H, Nohara T, Ikeda T, et al. 2010. Acylated glycosides of hydroxyl fatty acid methyl esters generated from the crude resin glycoside (pharbitin) of seeds of Pharbitis nil by treatment with indium(III) chloride in methanol. J. Nat. Prod. 73: 1846-1852. https://doi.org/10.1021/np1004888
- Ono M, Noda N, Kawasaki T, Miyahara K. 1990. Resin glycosides. VII. Reinvestigation of the component organic and glycosidic acids of pharbitin, the crude ether-insoluble resin glycoside ("convolvulin") of Pharbitidis Semen (seeds of Pharbitis nil). Chem. Pharm. Bull. 38: 1892-1897. https://doi.org/10.1248/cpb.38.1892
- Socquet-Juglard D, Patocchi A, Pothier JF, Christen D, Duffy B. 2012. Evaluation of Xanthomonas arboricola pv. pruni inoculation techniques to screen for bacterial spot resistance in peach and apricot. J. Plant Pathol. 94: S1.91-S1.96.
- Winstead NN, Kelman A. 1952. Inoculation techniques for evaluating resistance to Pseudomonas solanacearum. Phytopathology 42: 628-634.
- Bieber LW, da Silva Filho AA, Correa Lima RMO, de Andrade Chiappeta A, do Nascimento SC, de Souza IA, et al. 1986. Anticancer and antimicrobial glycosides from Ipomoea bahiensis. Phytochemistry 25: 1077-1081. https://doi.org/10.1016/S0031-9422(00)81557-5
- Reynolds WF, Yu M, Enriquez RG, Gonzalez H, Leon I, Magos G, et al. 1995. Isolation and characterization of cytotoxic and antibacterial tetrasaccharide glycosides from Ipomoea stans. J. Nat. Prod. 58: 1730-1734. https://doi.org/10.1021/np50125a014
- Pereda-Miranda R, Mata R, Anaya AL, Wickramaratne DBM, Pezzuto JM, Kinghorn AD. 1993. Tricolorin A, major phytogrowth inhibitor from Ipomoea tricolor. J. Nat. Prod. 56: 571-582. https://doi.org/10.1021/np50094a018
- Okabe H, Koshito N, Tanaka K, Kawasaki T. 1971. Studies on resin glycosides. II. Unhomogeneity of "pharbitic acid" and isolation and partial structures of pharbitic acids C and D, the major constituents of "pharbitic acid". Chem. Pharm. Bull. 19: 2394-2403. https://doi.org/10.1248/cpb.19.2394
- Pontes N de C, Kronka AZ, Moraes MFH, Nascimento AS, Fujinawa MF. 2011. Incorporation of neem leaves into soil to control bacterial wilt of tomato. J. Plant Pathol. 93: 741-744.
- Yuan G-Q, Li Q-Q, Qin J, Ye Y-F, Lin W. 2012. Isolation of methyl gallate from Toxicodendron sylvestre and its effect on tomato bacterial wilt. Plant Dis. 96: 1143-1147. https://doi.org/10.1094/PDIS-03-11-0150-RE
- Deberdt P, Perrin B, Coranson-Beaudu R, Duyck P-F, Wicker E. 2012. Effect of Allium fistulosum extract on Ralstonia solanacearum populations and tomato bacterial wilt. Plant Dis. 96: 687-692. https://doi.org/10.1094/PDIS-07-11-0601
- Pradhanang PM, Momol MT, Olson SM, Jones JB. 2003. Effects of plant essential oils on Ralstonia solanacearum population density and bacterial wilt incidence in tomato. Plant Dis. 87: 423-427. https://doi.org/10.1094/PDIS.2003.87.4.423
- Ji P, Momol MT, Olson SM, Pradhanang PM, Jones JB. 2005. Evaluation of thymol as biofumigant for control of bacterial wilt of tomato under field conditions. Plant Dis. 89: 497-500. https://doi.org/10.1094/PD-89-0497
- Lee YH, Choi CW, Kim SH, Yun JG, Chang SW, Kim YS, et al. 2012. Chemical pesticides and plant essential oils for disease control of tomato bacterial wilt. Plant Pathol. J. 28: 32-39. https://doi.org/10.5423/PPJ.OA.10.2011.0200
Cited by
- Antimicrobial activities of an oxygenated cyclohexanone derivative isolated from Amphirosellinia nigrospora JS‐1675 against various plant pathogenic bacteria and fungi vol.126, pp.3, 2017, https://doi.org/10.1111/jam.14138
- 만응환(萬應丸) 에탄올 추출물의 메티실린 내성 포도상구균에 대한 항균활성 및 내성억제 효과 vol.30, pp.1, 2017, https://doi.org/10.18325/jkmr.2020.30.1.31
- Identification and Evaluation of Apoptosis-Inducing Activity of Ipomone from Ipomoea nil: A Novel, Unusual Bicyclo-[3.2.1] Octanone Containing Gibberic Acid Diterpenoid vol.6, pp.12, 2017, https://doi.org/10.1021/acsomega.0c06304
- New ent-kauran diterpene and antioxidant components from the seed of Ipomoea nil vol.35, pp.15, 2017, https://doi.org/10.1080/14786419.2019.1686373