
International Journal of Internet, Broadcasting and Communication Vol.9 No.3 17-26 (2017)
https://doi.org/10.7236/IJIBC.2017.9.3.17

A Maximum Data Allocation Rule for an Anti-forensic Data Hiding Method in
NTFS Index Record

Gyu-Sang Cho

School of Public Technology Service, Dongyang University

cho@dyu.ac.kr

Abstract
An anti-forensic data hiding method in an NTFS index record is a method designed for anti-forensics,

which records data as a file name in index entries and thereafter the index entries are made to remain in the
intentionally generated slack area in a 4KB-sized index record[7]. In this paper, we propose a maximum
data allocation rule for an anti-forensic data hiding method in an NTFS index record; i.e., a computational
method for storing optimal data to hide data in an index record of NTFS is developed and the optimal
solution is obtained by applying the method. We confirm that the result of analyzing the case where the
number of index entries n = 7 is the maximum case, and show the screen captures of index entries as
experimental results.

Keywords: NTFS filesystem, Index Record Data Hiding, Anti-forensic

1. Introduction

Data hiding is the process of making data difficult to find while allowing access and use with limitations
on identification and collection of evidence by investigators. Obfuscation and encryption of data are the
representative techniques for achieving this purpose[1]. Using a combination of data hiding methods, e.g.
encryption, steganography and other various forms of data concealment, makes digital forensic examinations
more difficult.

Raggo and Hosmer[2] introduce various types of media for data hiding methods. They also describe data
hiding methods in the operating system, mainly for Windows and Linux operating systems, such as ADS
(alternate data stream), stealth ADS, and volume shadowing methods for Windows and filename trickery,
extended file system data hiding, and TrueCrypt for Linux. Carvey[3] also describes data hiding methods in
the operating system, such as ADS, registry, office documents, and OLE structured storage.

Hiding data throughout various locations of a computer system, e.g., slack space, bad sectors, alternate
data streams, hidden partitions of disk and hidden directories, involve the use of various tools and
techniques[1]. Slacker is part of the Metasploit framework, which is one of the well-known open source tools
used for data hiding. Slacker allows you to hide data in the slack space of NTFS, which is created when a file
system allocates more space for a file to be written than it actually uses, and it gives an ideal data-hiding
ground for the hacker[4].

Huebner et al. describe a method to hide data in the NTFS file system, and discuss detection and recovery

IJIBC 17-3-3

Manuscript Received: May. 20, 2017 / Revised: June. 3, 2017 / Accepted: June. 10, 2017
*Corresponding Author: cho@dyu.ac.kr
Tel:+82-31-839-9066, Fax: +82-31-839-9066
School of Public Technology Services, Dongyang University, Korea

18 International Journal of Internet, Broadcasting and Communication Vol.9 No.3 17-26 (2017)

analysis techniques of hidden data. They focus on sophisticated data hiding methods to prevent detection by
a forensic analysis and the methods are made possible by the structure of the NTFS file system. The methods
include metadata file based methods, data file based methods, and slack space hiding methods in NTFS[5].

 K. Eckstein and M. Jahnke propose a data hiding method [6] related to advanced file systems, where
data is stored to be hidden within the ext3 journaling file systems of Linux, with a low possibility of
detectability. The method exploits the fact that journaling file systems audit only recent modifications
recorded in the journal, which allows the intentional insertion of user data into file system data structures.

Recently, Cho[7] proposed a new data hiding method to hide in the NTFS index record, which writes data
as a file name in index entries in an index record, and these are intentionally made to remain a slack area in a
4KB-sized index record. Applying previous work, he announced a technique of data hiding in the NTFS
index record with a Unicode transformation that converts Hangul to Unicode and binary data to extended
Unicode conversion, for non-allowed character usage[8].

 In this paper, we propose a maximum data allocation rule for an anti-forensic data hiding method in a
NTFS index record. This problem is a function of the length of the character and the number of index entries,
with some difficult conditions, as described in Chapter 2. In Chap. 3, an anti-forensic data hiding method in a
NTFS index record is introduced. This method is a previously published approach[7], but only the basic
method is presented in the algorithm. Therefore, a more specific algorithm is required for a fully equipped
anti-forensic tool. A computational method for storing optimal data to hide data in an index record of NTFS
is proposed and the optimal solution is obtained by applying the method. The function for the problem is
presented in Section 4, and the optimum solution is obtained by using the method. In Section 5, we show the
result of analyzing the case where the number of index entries is n = 7 with screen captures of index entries.
In Chapter 6, we present conclusions of this study and discuss future research.

2. Problems
The logical method for allocating maximum data gives a logical way to determine the maximum number

of characters that record as file names in the index entry. In order to obtain the logical solution for the
method, there are many factors that make it difficult to solve the problem, and thus effects of the factors
should be considered deliberately. The factors are listed below.

n Limitation on file name length. The file name uses 2-bytes Unicode characters. From 1 to 255

characters can be used.

n 8-bytes unit for file name allocation. The file name is recorded in units of 8 bytes. Even if one character

is recorded, 8 bytes are allocated, and if four characters are used, 8 bytes are still allocated for the file
name. In this case, there is a buffer zone when selecting the optimal character.

n Path length included in a file name. When calculating the file name length, the path length is included.

However, when actually writing a file name, the path is not included. In other words, when considering
the length of a file name, only up to 255 characters are allowed, including the path, but only the portion of
the file name excluding the path is saved actually. Sometimes it is difficult to find the reason why the file
name length cannot store up to 255 characters if the path length is overlooked.

n The longest file does not guarantee the maximum. Choosing the longest file name does not guarantee

that the most optimal storage of the data will be secured. Due to the relationship between the fixed size of
the index record and the storage format of the index entry, it is necessary to analyze the correlation of the
optimal storage length considering space efficiency.

A Maximum Data Allocation Rule for Anti-forensic Data Hiding Method in NTFS Index Record 19

n End of an index entry should be considered. At the end of the index entry, the 16-byte last index entry

is used as a marker to indicate the end of the entire list. It should be considered that this may not be taken
into account when calculating the entire character of an index record.

n 2 bytes for file name header. Two bytes in the header of the file name string are used to indicate the

information of the file name. The first byte represents the length of the entire filename and the second
byte is used to represent the file namespace.

3. Algorithm of data hiding method and data structure

3.1 Data hiding method in an index record of NTFS

In this section, we introduce an anti-forensic data hiding method in an NTFS index record. This method is

a previously published approach[7], and we simply explain the main algorithm as follows.

 (1) Initialization and data input
- Enter the name of the working directory dwork.
- Enter the message mhide to hide
- Set the block size b of the length message mhide
- Initialize all variables

(2) Divide messages to hide by n
- Divide the message to hide into blocks of a certain size.
- Insert a bogus character to prevent the empty part of the end of the last message block from becoming a

multiple of n.

 (3) Insert head number hpre for block ordering
- Index entries are automatically sorted by alphabetical order. When the message mhide is divided into

several blocks, it is attached to the head of the block so that the order is always maintained.
- Specify a number or letter as the heading number.
- Attached to the head of the message, and it is stored in each message array.

 (4) Create file fhide to hide and working directory dwork
- Create a directory to contain files to hide.
- Set the file name to hide and create n files.

(5) File index entry to hide Record in slack area
- After recording the slack in the index record, delete the file after changing the file name, and the deleted

file in the last MFT entry will be recorded as a camouflage file fcamo.
- The name of the file to hide is set to the preceding character in alphabetical order to the header character.

Because index entries are always sorted in alphabetical order, the file name is selected to precede the index
entry to the message to hide.

20 International Journal of Internet, Broadcasting and Communication Vol.9 No.3 17-26 (2017)

- The first block (file name) of the message to hide is immediately after the file to be left on the index
entry.

- After deleting the first file to hide, change the name of the file to hide at the end to the name of the
camouflage file fcamo. Delete the file name immediately after changing it.

- Re-create the first file to hide. As a result, the last file to hide is deleted, and the last entry in the index
entry remains in the slack area. In the MFT entry, the information about the file to hide is not left whereas
the information of the camouflaged file fcamo is deleted.

- Repeat the above steps for all files to hide. Finally, only the anchor file will remain in the directory.

3.2 Schematic diagram of a relationship between MFT entry and index record

In this section, we simply explain an MFT entry and an index record with a schematic diagram, and

describe the data structure of an index record and an index entry.

Figure 1. MFT entry and Index Record

In figure 1, there are several lists of the directory. Surplus index entries cannot be contained in the

$INDEX_ROOT as a resident type, so $INDEX_ALLOCATION attribute is used to store in the index record
as a non-resident type. The 4KB-sized index record#1 contains several index entries. The index entry (abbr.

A Maximum Data Allocation Rule for Anti-forensic Data Hiding Method in NTFS Index Record 21

IE) has a 16-byte index entry header(abbr. IEH), and then the $FILE_NAME (abbr. $FN) attribute follows,
which stores Unicode characters 1~ 255 characters long as a file name (abbr. FN) after the 64-bytes
$FILE_NAME attribute header. The first two bytes (abbr. FNH) in the file name part are used to indicate the
information of the file name; i.e., the first one represents the length of an entire filename, and the second is
used to represent a file namespace.

3.3 Data structure of an index record and an index entry

(1) Structure of an index record[9]
One index record size is 4KB, and it contains an index record header and several index entries. It consists

of an index record header (0 to 23 bytes) and an index node header (24 to 63 bytes) from the beginning. Then
the index entry (64 bytes) follows. A fixup array is stored from 40 bytes to 63 bytes[9].

Table 1. Structure of index record

Offset Size Descriptions
0-3 4 “INDX” Signature
4-5 2 Offset to Fixup Array
6-7 2 Entry Number of Fixup Array

8-15 8 $LogFile Sequence Number (LSN)
16-23 8 VCN of This Index Record
24-27 4 Offset to Start Position of Index Entry
28-31 4 Offset to End of Used List of Index Entry
32-35 4 Offset to End of Allocated Index Entry
36-39 4 Flags
40-63 24 Fixup Array

64-4095 variable Index Entries

(2) Structure of an index entry[9]

An index entry has information of the file and directory list in a directory, which has the MFT reference
number (8 bytes) and entry length information(2 bytes). The $FILE_NAME attribute length and flags (child
exists or last entry) follows. If the flag information is set to child exists, then the last 8-bytes is added for the
VCN value of the child node [9].

Table 2. Structure of index entry

Offset Size Descriptions
0-7 8 MFT Reference of This File Name
8-9 2 Length of Entry

10-11 2 Length of $FILE_NAME Attribute
12-15 4 Flags(1:Child Exists,2:Last Entry)
16+ variable $FILE_NAME Attribute(If flags=1)

Last 8bytes 8 VCN of Child Node

22 International Journal of Internet, Broadcasting and Communication Vol.9 No.3 17-26 (2017)

(3) Structure of $FILE_NAME[9]

Every index entry has a $FIL_NAME attribute located at 16bytes offset from the beginning. The attribute
contains the following: File Reference of Parent Node (8 bytes), File Creation Time (8 bytes), File
Modification Time (8 bytes), MFT Modification Time (8 bytes), File Access Time (8 bytes), File Allocation
Size (8 bytes), Real File Size (8 bytes), Flag (4 bytes), Reparse (8 bytes), Length of File Name (1 byte), and
File Namespace (1 byte). The variable size of File Name is shown in Table 3[9].

Table 3. Structure of $FILE_NAME

Offset Size Descriptions
0-7 8 MFT Reference of Parent Node

8-15 8 File Creation Time
16-23 8 File Modification Time
24-31 8 MFT Modification Time
32-39 8 File Access Time
40-47 8 File Allocation Size
48-55 8 Real File Size
56-59 4 Flag
60-63 4 Reparse
64-64 1 Length of File Name
65-65 1 Namespace
66+ variable File Name

4. A maximum data allocation rule for the anti-forensic data hiding method
To calculate the number of index entries that can be placed in an index record, the fixed and the variable

factors to consider are as follows.

1) Index record size: 4KB(4,096 bytes)
2) Index record header (IRH): 64 bytes
3) Index entry header (IEH): 16 bytes
4) Fixed elements of $FILE_NAME attribute (FNA): 64 bytes
5) File name of $FILE_NAME attribute: variable
6) End mark of index entry (EIE): 16 bytes

In addition, there is one additional factor to consider. It should be further taken into account that the file
name is allocated in 8-byte units.

7) File name allocation unit: 8 bytes
8) The first two bytes are used for file name information, one is for the length information and the other is

for the namespace. Therefore, 6 bytes (3 Unicode characters) (i.e., except 2 bytes) are allocated to the
shortest file name. For the file name, a total of 512 bytes are used, but only 255 characters (510 bytes
can be used) are available excluding the first 2 bytes.

A Maximum Data Allocation Rule for Anti-forensic Data Hiding Method in NTFS Index Record 23

9) When considering the length of the file name, the directory path is included. Only the path name
excluding the drive letter is considered in the file name. However, it should be noted that the path itself
is not stored in the file name. For example, if a file is listed in d:\DirectoryPath1\SubPath1\SubSub2\,
you can store only 223 characters except for the path name of 32 characters excluding the drive letter
"d:\". If the directory path is included, this means that the maximum of 255 characters cannot be stored
in the file name itself.

Among these various factors, only the file name is variable. Therefore, in order to calculate the optimal

number of characters that can fit in an index record, a linear equation can be solved by taking into account
variable file names. After dividing the whole data to hide into blocks of arbitrary sizes, file names are made
with the data blocks, and then the maximum number of characters that can be entered into the index record is
determined by the following formula.

TotalIR = IRH + (IEH + FNA + LFN)*n + EIE (1)

where n is the number of index entries, LFN is the length of the file name, and TotalIR is all of the

characters written in a Index Record including the index record header, index entries, etc.

To maximize the number of characters that can be written in an index record, it is necessary to solve the

function of the length of the file name and the number of index entries. This is the process of determining the
length of a file name so that it can store the largest number of characters in a 4KB-sized index record. IRH +
IEH + FNA + EIE are the fixed elements. If the number of files is large, the number of fixed elements IEH +
FNA of the index entry increases. Therefore, it is preferable to calculate the space efficiency by selecting the
smallest number of files.

The number of possible index entries (the number of files) for the maximum possible length of 255
characters by the following calculation is found as an integer value of 6.

 TotalIR = IRH + (IEH + FNA + LFN)*n + EIE (2)
 = 64+ (16 + 64 + 2+ 255*2) * n + 16 = 4,096
 n = ⌞(4,096 – 80) / 592)⌟ = ⌞6.78⌟ = 6

The minimum number of characters constituting six index entries is 244 characters. However, since the

number of characters from 244 to 247 is allocated to the same 8-byte block, the largest value of 211
characters must be calculated. The results are as follows.

 TotalIR = IRH + (IEH + FNA + LFN)*n + EIE (3)
 = 64+ (16 + 64 + 2+ 247*2) * n + 16 = 4,096
 n = ⌞(4,096 – 80) / 576)⌟ = ⌞6.78⌟ = 6

When the file name has a length of 244 to 255 characters, six index entries can be constructed in the index

record. When the file name has 208 to 243 characters, the number of index entries is 7. For the maximum
case of 243 characters, the following results are obtained.

 TotalIR = IRH + (IEH + FNA + FNH + LFN)*n + EIE (4)
 = 64+ (16 + 64 + 2+ 243*2) * n + 16 = 4,096
 4096= 64+568n+16

24 International Journal of Internet, Broadcasting and Communication Vol.9 No.3 17-26 (2017)

 n = ⌞(4,096 – 80) / 568)⌟ = ⌞7.07⌟ = 7

If the number of index entries is 7, the minimum number of characters is 208, but 208 to 211 are allocated

to the same 8-byte block. The following results can be obtained by calculating the largest value of 211
characters.

 TotalIR = IRH + (IEH + FNA + FNH + LFN)*n + EIE (5)
 = 64+ (16 + 64 + 2+ 211*2) * n + 16 = 4,096
 4096= 64+504n+16
 n = ⌞(4,096 – 80) / 504⌟ = ⌞7.96⌟ = 7

The same method can be applied to calculate the minimum number of characters, one, as a file name. In

this case the number of index entries is 45, which can be obtained as listed in Table 4. In Table 4, the cases
of index entries n=6~45 are summarized. For the case of index entries n=7, 1,701 characters are recorded,
which is the most efficient. It can be seen that the efficiency is worst when the number of index entries is n =
45, because the number of characters to be stored is very small compared to the number of header characters.

Table 4. Structure of $FILE_NAME

No of
IE

per IR

Chars.
range

One
IE

Size

Max
Stored
chars.

Header
size of

IR

Header
size per

IE

Last
Entry
Mark

All
chars
in IR

Empty
space
in IR

6 244~254 592 1,524 3,632 -464
7 208~243 568 1,701 4,056 -40
8 180~207 496 1,656 4,048 -48
9 160~179 440 1,611 64 80 16 4,040 -56

10 140~159 400 1,590 4,080 -16
… … … … … …
45 1~3 88 135 4,040 -56

5. Experiments
We executed a test case of the proposed the maximum data allocation rule for the anti-forensic data

hiding method in a Windows 10 operating system and an NTFS v3.1 file system. The test environment
specifications are as follows.

Disk Format: NTFS v3.1
Storage drive: Samsung SSD(463GB)
Disk Allocation Cluster Size: 4KB(4,096 bytes)
Working Directory: d:\testDir
Disk Analysis Tool: WinHex v15.4(X-Ways Software)

A Maximum Data Allocation Rule for Anti-forensic Data Hiding Method in NTFS Index Record 25

Figure 2. Index record header and Index entry#1

Figure 3. Index entry#7, End of index entry, Empty space

The purpose of this experiment is to confirm the maximum character allocation for the proposed method.

In Section 4, a method to find the optimal solution through Equations 1 ~ 5 is provided. In this case, we can
verify that the maximum number of index entries with n = 7, which is the maximum condition found in

26 International Journal of Internet, Broadcasting and Communication Vol.9 No.3 17-26 (2017)

Table 4, gives the maximum value that can be stored in the index entry when the length of the file name is
243 characters. Figure 2 shows the interior of an index record, where a 64-byte index record header, marked
as “IRH”, and 7 index entries are contained. The first index entry marked the index entry header as “IEH#1”,
a file name header as “FNH#1”, and a file name as “FN#1”. File information for the first entry 0xF3(243)
gives the file name length and 00 is the file namespace.

Figure 3 shows the last entry marked as “IEH#7”+“FNH#7”+“FN#7”, which has the same size and
structure as index entry #1. The “EIE” is a 16-byte size of information indicating the end of an index entry.
The next following space is empty, and the empty space is 40 bytes, as determined by calculating Eq. 1~5
and as given in Table 4. It furthermore can be confirmed that the free space is 40 bytes in Figure 4.

5. Conclusion
In this study, we proposed a computational method for storing optimal data to hide data in an index record

of NTFS and obtained the optimal solution by applying the method. The method to hide data in a 4KB-sized
index record is designed for anti-forensics. which records data to hide as a file name in index entries and
thereafter the index entries are made to remain in the intentionally generated slack area.

This problem is a function of the length of the character and the number of index entries, with some
difficult conditions that are described in Section 2. The solved function for the problem is presented in
Section 4, and the optimum solution is obtained by using the method. In Section 5, we show the result of
analyzing the case where the number of index entries is n = 7 with screen captures of index entries.

The software tools for this method developed thus far have only basic functions. Developing a well-suited
tool is a future work, which has features such as the ability to read, write, and delete data at specific index
entry locations. It is also necessary to apply encryption of data to further enhance security.

Acknowledgement
This study was supported by a grant from Dong Yang University in 2016 and by the Basic Science

Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of
Education(NRF-2016R1D1A1B03935646).

References

[1] Wikipedia, Anti-computer forensics, https://en.wikipedia.org/wiki/Anti-computer_forensics
[2] Michael T. Raggo and Chet Hosmer, Data Hiding: Exposing Concealed Data in Multimedia, Operating Systems,

Mobile Devices and Network Protocols, Elsevier, 2013.
[3] H. Carvey, Windows Forensics and Incident Recovery, Addison-Wesley, 2005.
[4] Metasploit, Anti Forensics Project, http://www.metasploit.com/research/projects/antiforensics/
[5] Ewa Huebner, Derek Bem and Cheong Kai Wee, “Data Hiding in the NTFS File System,” Digital Investigation,

Vol. 3, Issue 4, 2006, pp. 211-226.
[6] K. Eckstein and M. Jahnke, “Data Hiding in Journaling File Systems,” Proceedings of Digital Forensic Research

Workshop (DFRWS 2005), pp. 1-8, Aug. 2005.
[7] G.-S. Cho, “A New NTFS Anti-Forensic Technique for NTFS Index Entry,” The Journal of Korea Institute of

Information, Electronics, and Communication Technology, Vol. 8, No. 4, 2015.
[8] G.-S. Cho, “An Anti-Forensic Technique for Hiding Data in NTFS Index Record with a Unicode

Transformation,” Journal of Korea Convergence Security Association, Vol. 16, No. 7, pp. 75-84, July 2015.
[9] B. Carrier, File System Forensic Analysis, Addison-Wesley, 2005.

