
International Journal of Internet, Broadcasting and Communication Vol.9 No.2 78-86 (2017)

https://doi.org/10.7236/IJIBC.2017.9.2.78

Energy-efficient Scheduling of Periodic Real-time Tasks on Heterogeneous Grid

Computing Systems

Wan Yeon Lee

1*
, Yun-Seok Choi

1

1
Dept.

of Computer Science, Dongduk Women’s University, Korea

*
wanlee@dongduk.ac.kr, cooling@ dongduk.ac.kr

Abstract

In this paper, we propose an energy-efficient scheduling scheme for real-time periodic tasks on a

heterogeneous Grid computing system. The Grid system consists of heterogeneous processors providing the

DVFS mechanism with a finite set of discrete clock frequencies. In order to save energy consumption, the

proposed scheduling scheme assigns each real-time task to a processor with the least energy increment. Also

the scheme activates a part of all available processors with unused processors powered off. Evaluation

shows that the proposed scheme saves up to 70% energy consumption of the previous method.

Keywords: Real-time Task, Scheduling, Energy-efficient Design, Heterogeneous Grid

1. Introduction

As low-cost computers and high-speed networking technologies are developed, distributed computing

platforms usually comprise a heterogeneous collection of computers. A heterogeneous Grid computing

system is a large loosely-coupled virtual supercomputer formed by combining many heterogeneous

platforms of different characteristics. The heterogeneous Grid system is suitable for solving complex

problems [1].

One of main problems when using Grid computing systems is a scheduling problem that finds an optimal

schedule for a set of tasks to be executed. In the scheduling problem of real-time tasks, the goal is to assign

each real-time task to the computing resources so as to finish its execution before its corresponding deadline.

Another critical issue for Grid computing systems is an efficient energy and thermal management. High

energy dissipation of processing components results in temperature increase of computing systems. The

temperature increase directly impacts the performance and reliability of integrated circuits (ICs) [2]. Thus

low energy dissipation of processing components is important for the scheduling problem of real-time tasks.

Whereas energy-efficient scheduling problems of real-time tasks on homogeneous computing systems

have been widely studies [3-6], those on heterogeneous computing systems are rarely studied. A few

IJIBC 17-2-11

Manuscript Received: Apr. 17, 2017 / Revised: Apr. 28, 2017 / Accepted: May. 12, 2017

Corresponding Author: wanlee@dongduk.ac.kr

Tel: +82-2-940-4685, Fax: +82-2-940-4170
Dept. of Computer Science, Dongduk Women’s University

Energy-efficient Scheduling of Periodic Real-time Tasks on Heterogeneous Grid Computing Systems 79

studies [7-10] dealt with the scheduling problem of real-time tasks on heterogeneous processing components.

However, they considered only the scheduling problem for sporadic real-time tasks, but not for periodic

real-time tasks.

In this paper, we propose an energy-efficient scheduling scheme that minimizes the energy consumption

of periodic real-time tasks while satisfying their deadlines on a Grid computing system composed of

heterogeneous processor components. In the considered system, processing components provide the dynamic

voltage and frequency scaling (DVFS) mechanism for efficient energy management. The DVFS mechanism

dynamically changes the voltage supplied to processors. The processor speed is proportional to supplied

clock frequencies, and the power consumption is approximately proportional to a polynomial function of the

clock frequency [11, 12]. In practical DVFS-enabled processors, only a finite set of discrete frequencies are

available and the relationship between available discrete frequencies and their power consumption is

irregular.

The proposed scheduling scheme assigns each real-time task to a processor with the least energy

increment. Also the scheme activates a part of all available processors with unused processors powered off

after assigning all tasks to a part of processors, in order to reduce the leakage power consumption of idle

processors [5, 11]. We formally solve the minimization problem of real-time tasks over finitely discrete

clock frequencies with irregular power consumptions. The proposed scheme finds a near minimum-energy

feasible schedule within a polynomial time, because the problem of minimizing the energy consumption of

real-time tasks while meeting their deadline is NP-hard. Evaluation results show that the proposed scheme

saves up to 70% energy consumption of the previous method.

The rest of this paper is organized as follows; Section 2 explains the considered system model. Section 3

describes the proposed scheme in detail. Section 4 shows evaluation results. Section 5 provides concluding

remarks.

2. System Model

There are given M periodic tasks with no interdependency. A periodic task consists of consecutive

instances arriving separately and sequentially. The computation of the previous instance must be completed

before arrival of the next instance. The arrival period becomes the deadline of each instance. The worst

computation amounts of tasks are considered for static scheduling. The instance of the m
th
 task is denoted as

Tm. Each Tm requires at most Cm computation cycles to be executed within its deadline Dm. In terms of

execution time, the task completion time is the required computation cycles divided by the clock frequency

supplied to a processor.

The considered processors support the dynamic voltage and the frequency scaling (DVFS) mechanism that

dynamically changes the clock frequency supplied to the processors. Computation speed of the processors is

typically proportional to the clock frequency, and their power consumption is approximately proportional to

the square of the clock frequency. In practical DVFS-enabled processors, only a finite set of discrete clock

frequencies are available and the relationship between available discrete frequencies and their power

consumption is irregular. For the practical DVFS evaluation, we use the data obtained from well-known

DVFS processors: the Intel XScale processor and the IBM PPL405LP processor [11].

K discrete frequencies available to these processors are denoted as f1, f2, …, fK in increasing order. For a

given frequency fk where 1≤ k ≤ K, the power consumption is denoted as pk. Then the execution time of each

cycle is 1/ fk and pk, respectively. If i < j, then fi < fj and pi < pj. Even when a processor has no computation to

80 International Journal of Internet, Broadcasting and Communication Vol.9 No.2 78-86 (2017)

execute, the power consumption in the idle status, i.e., leakage power consumption, is strictly positive [11, 3].

The power consumption in the idle status is denoted as p0. For convenience, we additionally define a virtual

clock frequency of the idle status as f0 and set its value to zero, because its computation speed is semantically

equivalent to zero.

Table 1 shows the available frequencies and the power consumptions (energy consumption rates) of the

Intel XScale processor. Table 2 shows the available frequencies and the power consumptions of the IBM

PPL405LP processor.

Table 1. Intel XScale Processor

k 0 1 2 3 4 5

fk (MHz) 0 150 400 600 800 1000

pk (mW) 40 80 170 400 900 1600

Table 2. IBM PPC405LP Processor

k 0 1 2 3 4

fk (MHz) 0 33 100 266 333

pk (mW) 12 19 72 600 750

The ratio of the execution time of Tm at the maximum clock frequency to the deadline is referred to as task

utilization and denoted as Um = Cm/(fK ∙ Dm). Total utilization of all tasks assigned to processor Pn is

referred to as processor load and denoted as Ln = ∑ U. The lowest constant frequency that can execute the

tasks assigned to processor Pn is referred to as optimal frequency and denoted as fn
opt

. In other words, the

optimal frequency is the minimum number of computation cycles that must be executed per second in the

feasible schedule. In some case, fn
opt

 ∉ { f1, f2, …, fK } because fn
opt

 is intrinsically continuous.

The considered problem is to minimize total energy consumption of N processors while executing M

periodic real-time tasks within their respective deadlines. The M independent tasks can be executed on a

subset of N processors with unused processors powered off. Activated processors select their clock frequency

from a finite set of discrete frequencies { f1, f2, …, fK } and change their frequency independently at any time.

A schedule is called feasible if the M tasks are completely executed within their respective deadlines.

3. Proposed Scheduling

Figure 1 shows an example of saving energy by considering the characteristics of heterogeneous

processors and by turning off power of rarely used processors. Five periodic tasks (T1, T2, T3, T4 and T5) are

given on four processors: two XScale processors (P1 and P2) and two PPC405LP processors (P3 and P4). The

optimal frequencies are 400 MHz for T1, 300 MHz for T2, 150 MHz for T3, 100 MHz for T4, and 100 MHz

for T5.

Figure 1(a) shows the case where five tasks are assigned to four processors so as to minimize the

maximum processor load among the four processors based on the worst-fit-decreasing heuristic of the

previous method [13]. In this case, the optimal frequency of P1 is 400 MHz, that of P2 is 400 MHz, that of P3

is 150 MHz, and that of P4 is 100 MHz. Then the mean energy consumption rate of P1 is 170 mW, that of P2

is 170 mW, that of P3 is 231 mW, and that of P4 is 72 mW. In Figure 1(a), the total energy consumption rate

Energy-efficient Scheduling of Periodic Real-time Tasks on Heterogeneous Grid Computing Systems 81

of the four processors is 170 + 170 + 231 + 72 = 643. Figure 1(b) shows the case where tasks are assigned by

considering the different energy consumption increments of heterogeneous processors and by turning off the

power of a rarely used processor. In this case, the optimal frequency of P1 is 500 MHz, that of P2 is 450 MHz,

that of P3 is 150 MHz, and P4 is powered off. Then the mean energy consumption rate of P1 is 285 mW,

that of P2 is 227.5 mW, that of P3 is 72 mW, and that of P4 is zero. In Figure 1(b), the total energy

consumption rate of the four processors is 285 + 227.5 + 72 + 0 = 584.5. Compared with schedule of Figure

1(a), the schedule of Figure 1(b) saves the energy consumption by about 10%.

Figure 1. Working Example

Our previous study [3] verifies the Optimal Schedule of multiple periodic tasks executed on a single

processor. It is known that when periodic tasks are executed on a processor, the Optimal Schedule

determines their execution order according to the Earliest-Deadline First (EDF) rule and executes them at the

optimal frequency f
opt

. The optimal frequency (the lowest constant frequency executing all assigned tasks

within their deadlines) of the processor Pn is derived from its processor load Ln, so as f
opt

= Ln ∙ fK.

When Ln ∙ fK = fi for fi { f1, f2, …, fK }, the frequency fi becomes the optimal frequency and the

minimum-energy schedule assigns fi to the whole computation cycles. When fi-1 < Ln ∙ fK < fi for fi-1 { f1, f2,

…, fK } and fi { f1, f2, …, fK }, the minimum-energy schedule virtually generates the optimal frequency by a

combined use of the two adjacent frequencies fi-1 and fi with the mean of Ln ∙ fK: assigning fi-1 to a portion of

computation cycles and assigning fi to the rest computation cycles. The average power consumption of each

activated processor Pn in the minimum-energy feasible schedule is determined by the optimal frequency f
opt

= Ln ∙ fK and can be formulated as a function En(Ln) with the input Ln as follows:

 {

 (1)

The function En(Ln) is an increasing, convex and piece-wise linear function of Ln, such as shown in

Figure 1. If Ln > 1, then it is impossible to complete the task before the deadline. Specially, we define En(Ln)

= when Ln > 1. Total power consumption of activated processors is ∑ En(Ln).

82 International Journal of Internet, Broadcasting and Communication Vol.9 No.2 78-86 (2017)

Figure 2. Relation between Processor Load and Energy Consumption Rate

Next we determine the number of activated processors among available processors. Our goal is to

minimize total mean power consumption of all activated processors executing all real-time tasks. If the

number of activated processors is fixed and given as , then distributing the total utilization of all tasks

(∑

) evenly to processors minimizes total power consumption of all activated processors because

En(Ln) in Figure 2 is a convexly increasing function of Ln. The number of activated processors is

determined as follows; Define a linear function ∙ Ln where is a positive constant. If is selected to be ∙

Ln = En(Ln) only at a unique point Ln = as shown in Figure 3, then = (∑

) / . When the total

utilization of all tasks (∑

) is evenly distributed to processors, the minimum power consumption of

 processors is ∙ En() because = (∑

) / .

If (+) processors are activated for positive , then the minimum power consumption of (+)

processors is (+) ∙ En(-) where (-) = (∑

) /(+). As shown in Figure 3, (+) ∙

En(-) > ∙ (+) ∙ (-) = ∙ ∙ = ∙ En(). That is, the minimum power consumption of (

+) activated processors is larger than that of activated processors. By a similar reason, the minimum

power consumption of (-) activated processors is larger than that of activated processors. Hence,

distributing total utilization of all tasks to processors as evenly as possible minimizes total power

consumption of all activated processors. If is not an integer, then one of two neighboring integers is

selected to have less total power consumption of activated processors.

Figure 3. Working Example

Energy-efficient Scheduling of Periodic Real-time Tasks on Heterogeneous Grid Computing Systems 83

When there are multiple different types of processors, we determine the number of activated processors

for each type of processors. When the number of different types of processors are , the numbers of

activated processors for each type are denoted as 1, …, . Also the linear function shown in Figure 3 is

denoted as ∙ Ln and ∙ Ln = En(Ln) only at a unique point Ln = for each =1, …, . The number

of activated processors for each type is calculated with distributed total utilization of all tasks. If the linear

function ∙ Ln has a larger value of slope, its number for activated processors is calculated with a larger

portion of total utilization of tasks because the processor with a larger increment of energy consumption has

a larger effect of energy saving when turning off its power. Then the number of activated processors for

each =1, …, is calculated as follows:

 = / (∑

) (∑

) / for each =1, …, . (2)

The remaining issue is to determine the processor to which each task is assigned. From the processor load

value of each processor, we can derive the optimal frequency and the minimal long-term power consumption

of each processor. The problem of minimizing total energy consumption of all processors can be formulated

as follows:

 ∑

 (3)

where unused processors with no assigned tasks are powered off (i.e., E(0) = 0 if Ln = 0, instead of

E(0) = p0).

Although the above problem has a lower complexity than the original task scheduling problem, it is still

NP-hard for a general task set because the problem of distributing all utilization of given multiple tasks

evenly to given multiple processors is NP-hard [13]. Because this computational overhead is too heavy to run

even offline for a large number of available processors and tasks, we propose a scheduling scheme that finds

a near minimum-energy feasible schedule within a polynomial time at the cost of a limited increment of

energy consumption. The following pseudo-code describes the proposed scheduling scheme.

Step 1. Calculate task utilization values Um for each task Tm and determine the number of

activated processors for each type of processors.

Step 2. Assign given M tasks to ∑ activated processors.

2.1: Sort all tasks in the decreasing order of their utilization values.

2.2: Assign each task one by one to the processor with the least energy increment after

assignment.

Step 3. Determine the schedule of each activated processor.

3.1: Sort the execution order of the tasks assigned to each processor based on the

earliest-deadline-first(EDF) rule.

3.2: Apply the optimal frequency f
opt

 (derived from the processor load Ln so as f
opt

=

Ln ∙ fK) to the instant clock frequency.

Figure 4. Proposed Scheduling Scheme

84 International Journal of Internet, Broadcasting and Communication Vol.9 No.2 78-86 (2017)

The computational complexity of the proposed is O(M ∙ log M ∙ N + N ∙ K). The complexity of Step 1 is

O(M ∙ N). The complexity to find the values of all and is O(M). The complexity to calculate the

number for each type of processors is O(M) and that for all types is O(M ∙ N). The complexity of

Step 2.1 is O(M ∙ log M) and that of Step 2.2 is O(M ∙ N). The complexity of Step 3.1 is O(M ∙ log M ∙ N)

and that of Step 3.2 is O(N ∙ K).

4. Evaluation

The proposed scheme is compared with the previous method [13] that assigns given tasks to all available

processors without consideration of different characteristics of heterogeneous processors. It is assumed that

the previous method generates the optimal frequency with a combined use of two neighboring discrete

frequencies, although it was to designed to operate over infinitely continuous frequencies. As a performance

metric, we define the ratio of total energy consumption in the proposed scheme to that in the previous

method as Normalized Energy Consumption (NEC).

For performance evaluation, we employ simulation experiments with MATLAB tool on Windows 7

operating system. We use the data obtained from practical DVFS processors and synthetically generates

periodic tasks. In our evaluation, it is assumed that eight Intel XScale processors and eight IBM PPL405C

processors are given. Task set consists of 16, 24 or 32 periodic tasks. The deadline of each task is randomly

selected between 10 milliseconds and 1 second. The number of computation cycles of each task is

synthetically generated between 100,000 and 100,000,000 from a normal distribution. We run 100,000 task

sets and display their average values.

Figure 5. NEC values against average Task Load

In the first set of comparisons, we examine the performance of the relative computation amount of tasks to

the deadline and the number of processors available in the system. To measure the relative computation

amount of tasks to the deadline, we define the ratio of the completion time of given computation cycles

under the maximum frequency of all kinds of processors to the deadline as Task Load, i.e., 100 Cm /(Dm ∙

fK). Here we do not consider the time delay and the extra energy required to change the frequency at runtime.

Figure 5 shows NEC values against the average Task Load. As the average value of Task Load decreases,

the energy saving effect of the proposed scheme increases. Also, as the number of given tasks increases, the

energy saving effect increases. When the number of given tasks is 32 and the average Task Load is 5%, the

Energy-efficient Scheduling of Periodic Real-time Tasks on Heterogeneous Grid Computing Systems 85

proposed scheme saves about 70% energy consumption of the previous method.

In the second set of comparisons, we examine the number of activated processors among all available

processors in the proposed scheme. Figure 6 shows the number of activated processors among all available

processors. As the average value of Task Load decreases, the proposed scheme activates fewer processors

while the previous method activates all available processors. From Figure 5 and Figure 6, it is verified that

the proposed scheme saves more energy as the proposed scheme activates fewer processors among given

available processors.

Figure 6. Number of Activated Processors

5. Conclusions

The proposed scheduling scheme tries to minimize the energy consumption of real-time periodic tasks

while their deadlines on a heterogeneous Grid computing system. The grid system consists of heterogeneous

processors providing the DVFS mechanism with a finite set of discrete clock frequencies. In order to save

energy consumption, the proposed scheduling scheme assigns each real-time task to a processor with the

least energy increment. Also the scheme activates a part of all available processors with unused processors

powered off. The proposed scheme is designed to find a near minimum-energy feasible schedule within a

polynomial time, because the problem of minimizing the energy consumption of real-time tasks while

meeting their deadline is NP-hard. Evaluation shows that the proposed scheme saves up to 70% energy

consumption of the previous method.

Acknowledgements

This research was supported by the Dongduk Women’s University Grant, 2016.

References

[1] S. Nesmachnow, B. Dorronsoro, J. E. Pecero and P. Bouvry, “Energy-Aware Scheduling on Multicore

Heterogeneous Grid Computing Systems,” Journal of Grid Computing (Jun. 2013), vol. 11, pp. 653-680.

[2] X. Zhou, J. Yang, M. Chrobak and Y. Zhang, "Performance-Aware Thermal Management via Task

Scheduling," ACM Transactions on Architecture and Code Optimization (Apr. 2010), vol. 7, no. 1, pp. 1-31.

86 International Journal of Internet, Broadcasting and Communication Vol.9 No.2 78-86 (2017)

[3] W. Y. Lee, “Energy-efficient Scheduling of Periodic Real-time Tasks on Lightly Loaded Multicore

Processors,” IEEE Transaction on Parallel and Distributed Systems (Mar. 2012), vol. 23, no. 3, pp. 530-537.

[4] D. Li, J. Wu, K. Li and K. Hwang, “Energy-Aware Scheduling on Multiprocessor Platforms with Devices,”

International Conference on Cloud and Green Computing (Sep. 2013), pp. 26-33.

[5] W. Y. Lee, “Stochastically Power-minimum Scheduling of Real-time Multicore Systems with Leakage Power

Awareness,” IET Electronics Letters (Jun. 2013), vol. 49, no. 13, pp. 790-793.

[6] J. Liu and J. Guo, “Energy Efficient Scheduling of Real-time Tasks on Multi-core Processors with Voltage

Islands,” Journal of Future Generation Computer Systems (Mar. 2016), vol. 56, pp. 202-210.

[7] K. Li, “Optimal Load Distribution for Multiple Heterogeneous Blade Services in a Cloud Computing

Environment,” Journal of Grid Computing (2013), vol. 11, no. 1, pp. 27-46.

[8] H. C. Liao, Y.-S. Chen and T.H. Tsai, “On-line Real-time Task Scheduling in Heterogeneous Multicore

System-on-a-chip,” IEEE Transaction on Parallel and Distributed Systems (Jan. 2013), vol. 24, no. 1, pp.

118-130.

[9] Y.-S. Chen and M.-Y. Chen, “On-line Energy-efficient Real-time Task Scheduling for a Heterogeneous

Dual-core System-on-a-chip,” Journal of Systems Architecture (Apr.-May 2013), vol. 59, no. 4-5, pp. 234-244.

[10] G. Wang, W. Li and X. Hei, “Energy-Aware Real-time Scheduling on Heterogeneous Multi-Processor,”

Annual Conference on Information Sciences and Systems (Mar. 2015), pp. 1-7.

[11] R. Xu, C. Xi, R. Melhem and D. Mosse, “Practical PACE for Embedded Systems,” International Conference

on Embedded Software (2004), pp. 54-63.

[12] W. Yuan and K. Nahrstedt, “Energy-efficient Soft Real-time CPU Scheduling for Mobile Multimedia

Systems,” ACM Symposium on Operating Systems Principles (2003), pp. 149-163.

[13] H. Aydin and Q. Yang, “Energy-aware partitioning for multiprocessor real-time systems,” International

Parallel Distributed Processing Symposium (2003), pp. 113.2.

