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Abstract 

In this paper, we propose an energy-efficient scheduling scheme for real-time periodic tasks on a 

heterogeneous Grid computing system. The Grid system consists of heterogeneous processors providing the 

DVFS mechanism with a finite set of discrete clock frequencies. In order to save energy consumption, the 

proposed scheduling scheme assigns each real-time task to a processor with the least energy increment. Also 

the scheme activates a part of all available processors with unused processors powered off. Evaluation 

shows that the proposed scheme saves up to 70% energy consumption of the previous method. 
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1. Introduction 

As low-cost computers and high-speed networking technologies are developed, distributed computing 

platforms usually comprise a heterogeneous collection of computers. A heterogeneous Grid computing 

system is a large loosely-coupled virtual supercomputer formed by combining many heterogeneous 

platforms of different characteristics. The heterogeneous Grid system is suitable for solving complex 

problems [1].  

One of main problems when using Grid computing systems is a scheduling problem that finds an optimal 

schedule for a set of tasks to be executed. In the scheduling problem of real-time tasks, the goal is to assign 

each real-time task to the computing resources so as to finish its execution before its corresponding deadline. 

Another critical issue for Grid computing systems is an efficient energy and thermal management. High 

energy dissipation of processing components results in temperature increase of computing systems. The 

temperature increase directly impacts the performance and reliability of integrated circuits (ICs) [2]. Thus 

low energy dissipation of processing components is important for the scheduling problem of real-time tasks. 

Whereas energy-efficient scheduling problems of real-time tasks on homogeneous computing systems 

have been widely studies [3-6], those on heterogeneous computing systems are rarely studied.  A few
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studies [7-10] dealt with the scheduling problem of real-time tasks on heterogeneous processing components. 

However, they considered only the scheduling problem for sporadic real-time tasks, but not for periodic 

real-time tasks. 

In this paper, we propose an energy-efficient scheduling scheme that minimizes the energy consumption 

of periodic real-time tasks while satisfying their deadlines on a Grid computing system composed of 

heterogeneous processor components. In the considered system, processing components provide the dynamic 

voltage and frequency scaling (DVFS) mechanism for efficient energy management. The DVFS mechanism 

dynamically changes the voltage supplied to processors. The processor speed is proportional to supplied 

clock frequencies, and the power consumption is approximately proportional to a polynomial function of the 

clock frequency [11, 12]. In practical DVFS-enabled processors, only a finite set of discrete frequencies are 

available and the relationship between available discrete frequencies and their power consumption is 

irregular. 

The proposed scheduling scheme assigns each real-time task to a processor with the least energy 

increment. Also the scheme activates a part of all available processors with unused processors powered off 

after assigning all tasks to a part of processors, in order to reduce the leakage power consumption of idle 

processors [5, 11]. We formally solve the minimization problem of real-time tasks over finitely discrete 

clock frequencies with irregular power consumptions. The proposed scheme finds a near minimum-energy 

feasible schedule within a polynomial time, because the problem of minimizing the energy consumption of 

real-time tasks while meeting their deadline is NP-hard.  Evaluation results show that the proposed scheme 

saves up to 70% energy consumption of the previous method. 

The rest of this paper is organized as follows; Section 2 explains the considered system model. Section 3 

describes the proposed scheme in detail. Section 4 shows evaluation results. Section 5 provides concluding 

remarks. 

 
2. System Model 
 

There are given M periodic tasks with no interdependency. A periodic task consists of consecutive 

instances arriving separately and sequentially. The computation of the previous instance must be completed 

before arrival of the next instance. The arrival period becomes the deadline of each instance. The worst 

computation amounts of tasks are considered for static scheduling. The instance of the m
th
 task is denoted as 

Tm. Each Tm requires at most Cm computation cycles to be executed within its deadline Dm. In terms of 

execution time, the task completion time is the required computation cycles divided by the clock frequency 

supplied to a processor.  

The considered processors support the dynamic voltage and the frequency scaling (DVFS) mechanism that 

dynamically changes the clock frequency supplied to the processors. Computation speed of the processors is 

typically proportional to the clock frequency, and their power consumption is approximately proportional to 

the square of the clock frequency. In practical DVFS-enabled processors, only a finite set of discrete clock 

frequencies are available and the relationship between available discrete frequencies and their power 

consumption is irregular. For the practical DVFS evaluation, we use the data obtained from well-known 

DVFS processors: the Intel XScale processor and the IBM PPL405LP processor [11]. 

K discrete frequencies available to these processors are denoted as f1, f2, …, fK in increasing order. For a 

given frequency fk where 1≤ k ≤ K, the power consumption is denoted as pk. Then the execution time of each 

cycle is 1/ fk and pk, respectively. If i < j, then fi < fj and pi < pj. Even when a processor has no computation to 
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execute, the power consumption in the idle status, i.e., leakage power consumption, is strictly positive [11, 3]. 

The power consumption in the idle status is denoted as p0. For convenience, we additionally define a virtual 

clock frequency of the idle status as f0 and set its value to zero, because its computation speed is semantically 

equivalent to zero. 

Table 1 shows the available frequencies and the power consumptions (energy consumption rates) of the 

Intel XScale processor. Table 2 shows the available frequencies and the power consumptions of the IBM 

PPL405LP processor. 

 

Table 1. Intel XScale Processor  

k 0 1 2 3 4 5 

fk (MHz) 0 150 400 600 800 1000 

pk (mW) 40 80 170 400 900 1600 

 
Table 2. IBM PPC405LP Processor  

k 0 1 2 3 4 

fk (MHz) 0 33 100 266 333 

pk (mW) 12 19 72 600 750 

 
The ratio of the execution time of Tm at the maximum clock frequency to the deadline is referred to as task 

utilization and denoted as Um =  Cm/(fK ∙ Dm). Total utilization of all tasks assigned to processor Pn is 

referred to as processor load and denoted as Ln = ∑ U. The lowest constant frequency that can execute the 

tasks assigned to processor Pn is referred to as optimal frequency and denoted as fn
opt

. In other words, the 

optimal frequency is the minimum number of computation cycles that must be executed per second in the 

feasible schedule. In some case, fn
opt

 ∉ { f1, f2, …, fK } because fn
opt

 is intrinsically continuous.  

The considered problem is to minimize total energy consumption of N processors while executing M 

periodic real-time tasks within their respective deadlines. The M independent tasks can be executed on a 

subset of N processors with unused processors powered off. Activated processors select their clock frequency 

from a finite set of discrete frequencies { f1, f2, …, fK } and change their frequency independently at any time. 

A schedule is called feasible if the M tasks are completely executed within their respective deadlines.  

 
3. Proposed Scheduling  
 

Figure 1 shows an example of saving energy by considering the characteristics of heterogeneous 

processors and by turning off power of rarely used processors. Five periodic tasks (T1, T2, T3, T4 and T5) are 

given on four processors: two XScale processors (P1 and P2) and two PPC405LP processors (P3 and P4). The 

optimal frequencies are 400 MHz for T1, 300 MHz for T2, 150 MHz for T3, 100 MHz for T4, and 100 MHz 

for T5. 

Figure 1(a) shows the case where five tasks are assigned to four processors so as to minimize the 

maximum processor load among the four processors based on the worst-fit-decreasing heuristic of the 

previous method [13]. In this case, the optimal frequency of P1 is 400 MHz, that of P2 is 400 MHz, that of P3 

is 150 MHz, and that of P4 is 100 MHz. Then the mean energy consumption rate of P1 is 170 mW, that of P2 

is 170 mW, that of P3 is 231 mW, and that of P4 is 72 mW. In Figure 1(a), the total energy consumption rate 
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of the four processors is 170 + 170 + 231 + 72 = 643. Figure 1(b) shows the case where tasks are assigned by 

considering the different energy consumption increments of heterogeneous processors and by turning off the 

power of a rarely used processor. In this case, the optimal frequency of P1 is 500 MHz, that of P2 is 450 MHz, 

that of P3 is 150 MHz, and P4 is powered off.  Then the mean energy consumption rate of P1 is 285 mW, 

that of P2 is 227.5 mW, that of P3 is 72 mW, and that of P4 is zero. In Figure 1(b), the total energy 

consumption rate of the four processors is 285 + 227.5 + 72 + 0 = 584.5. Compared with schedule of Figure 

1(a), the schedule of Figure 1(b) saves the energy consumption by about 10%. 

 

 

Figure 1. Working Example  
 

Our previous study [3] verifies the Optimal Schedule of multiple periodic tasks executed on a single 

processor. It is known that when periodic tasks are executed on a processor, the Optimal Schedule 

determines their execution order according to the Earliest-Deadline First (EDF) rule and executes them at the 

optimal frequency f 
opt

. The optimal frequency (the lowest constant frequency executing all assigned tasks 

within their deadlines) of the processor Pn is derived from its processor load Ln, so as f 
opt 

= Ln ∙ fK.  

When Ln ∙ fK = fi  for fi { f1, f2, …, fK }, the frequency fi becomes the optimal frequency and the 

minimum-energy schedule assigns fi to the whole computation cycles. When fi-1 < Ln ∙ fK < fi  for fi-1 { f1, f2, 

…, fK } and fi { f1, f2, …, fK }, the minimum-energy schedule virtually generates the optimal frequency by a 

combined use of the two adjacent frequencies fi-1 and fi with the mean of Ln ∙ fK: assigning fi-1 to a portion of 

computation cycles and assigning fi to the rest computation cycles. The average power consumption of each 

activated processor Pn in the minimum-energy feasible schedule is determined by the optimal frequency f 
opt 

= Ln ∙ fK and can be formulated as a function En( Ln ) with the input Ln as follows: 

 

          {

                    
  

  

       
        
  
  

  
    
  

       
    

  
                              

    

  
      

  

  
 
           (1) 

 

The function En( Ln ) is an increasing, convex and piece-wise linear function of Ln, such as shown in 

Figure 1. If Ln > 1, then it is impossible to complete the task before the deadline. Specially, we define En( Ln ) 

=  when Ln > 1. Total power consumption of activated processors is ∑ En( Ln ). 
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Figure 2. Relation between Processor Load and Energy Consumption Rate 
 

Next we determine the number of activated processors among available processors. Our goal is to 

minimize total mean power consumption of all activated processors executing all real-time tasks.  If the 

number of activated processors is fixed and given as , then distributing the total utilization of all tasks 

(∑   
 
   ) evenly to  processors minimizes total power consumption of all activated processors because 

En( Ln ) in Figure 2 is a convexly increasing function of Ln. The number  of activated processors is 

determined as follows; Define a linear function  ∙ Ln where  is a positive constant. If  is selected to be  ∙ 

Ln = En( Ln ) only at a unique point Ln =   as shown in Figure 3, then  = (∑   
 
   ) / . When the total 

utilization of all tasks (∑   
 
   ) is evenly distributed to  processors, the minimum power consumption of 

 processors is  ∙ En(  ) because   =  (∑   
 
   ) / .  

If ( + ) processors are activated for positive , then the minimum power consumption of ( + ) 

processors is ( + )  ∙ En( - )  where ( - ) =  (∑   
 
   ) /( + ). As shown in Figure 3, ( + )  ∙ 

En( - )  >  ∙ ( + )  ∙ ( - )  =  ∙  ∙  =  ∙ En(  ). That is, the minimum power consumption of ( 

+ )  activated processors is larger than that of   activated processors. By a similar reason, the minimum 

power consumption of ( - )  activated processors is larger than that of   activated processors. Hence, 

distributing total utilization of all tasks to   processors as evenly as possible minimizes total power 

consumption of all activated processors. If   is not an integer, then one of two neighboring integers is 

selected to have less total power consumption of activated processors. 
 

 

Figure 3. Working Example 
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When there are multiple different types of processors, we determine the number of activated processors 

for each type of processors. When the number of different types of processors are ,  the numbers of 

activated processors for each type are denoted as 1, …, . Also the linear function shown in Figure 3 is 

denoted as  ∙ Ln and  ∙ Ln = En( Ln ) only at a unique point Ln =   for each =1, …, . The number  

of activated processors for each type is calculated with distributed total utilization of all tasks. If the linear 

function  ∙ Ln has a larger value of slope, its number  for activated processors is calculated with a larger 

portion of total utilization of tasks because the processor with a larger increment of energy consumption has 

a larger effect of energy saving when turning off its power. Then the number  of activated processors for 

each =1, …,  is calculated as follows:  

 

 = / (∑ 
 


   )   (∑   

 
   ) /    for each =1, …, .                   (2) 

 

The remaining issue is to determine the processor to which each task is assigned. From the processor load 

value of each processor, we can derive the optimal frequency and the minimal long-term power consumption 

of each processor. The problem of minimizing total energy consumption of all processors can be formulated 

as follows: 

 

           ∑         
 
                                                            (3) 

 

where unused processors with no assigned tasks are powered off (i.e.,  E( 0 )  = 0  if Ln = 0, instead of  

E( 0 ) = p0 ). 

Although the above problem has a lower complexity than the original task scheduling problem, it is still 

NP-hard for a general task set because the problem of distributing all utilization of given multiple tasks 

evenly to given multiple processors is NP-hard [13]. Because this computational overhead is too heavy to run 

even offline for a large number of available processors and tasks, we propose a scheduling scheme that finds 

a near minimum-energy feasible schedule within a polynomial time at the cost of a limited increment of 

energy consumption. The following pseudo-code describes the proposed scheduling scheme. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 1. Calculate task utilization values Um for each task Tm and determine the number  of 

activated processors for each type of processors. 

Step 2. Assign given M tasks to ∑   activated processors. 

2.1: Sort all tasks in the decreasing order of their utilization values. 

2.2: Assign each task one by one to the processor with the least energy increment after 

assignment.  

Step 3. Determine the schedule of each activated processor. 

3.1: Sort the execution order of the tasks assigned to each processor based on the 

earliest-deadline-first(EDF) rule. 

3.2: Apply the optimal frequency f 
opt

  (derived from the processor load Ln  so as f 
opt 

= 

Ln ∙ fK) to the instant clock frequency.  

 

Figure 4. Proposed Scheduling Scheme 
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The computational complexity of the proposed is O( M ∙ log M ∙ N + N ∙ K ). The complexity of Step 1 is 

O( M ∙ N ). The complexity to find the values of all  and  is O( M  ). The complexity to calculate the 

number  for each type of processors is O( M  )  and that for all types is O( M ∙ N ). The complexity of 

Step 2.1 is O( M ∙ log M ) and that of Step 2.2 is O( M ∙ N ). The complexity of Step 3.1 is O( M ∙ log M ∙ N ) 

and that of Step 3.2 is O( N ∙ K ). 

 
4. Evaluation 

The proposed scheme is compared with the previous method [13] that assigns given tasks to all available 

processors without consideration of different characteristics of heterogeneous processors. It is assumed that 

the previous method generates the optimal frequency with a combined use of two neighboring discrete 

frequencies, although it was to designed to operate over infinitely continuous frequencies. As a performance 

metric, we define the ratio of total energy consumption in the proposed scheme to that in the previous 

method as Normalized Energy Consumption (NEC). 

For performance evaluation, we employ simulation experiments with MATLAB tool on Windows 7 

operating system. We use the data obtained from practical DVFS processors and synthetically generates 

periodic tasks. In our evaluation, it is assumed that eight Intel XScale processors and eight IBM PPL405C 

processors are given. Task set consists of 16, 24 or 32 periodic tasks. The deadline of each task is randomly 

selected between 10 milliseconds and 1 second. The number of computation cycles of each task is 

synthetically generated between 100,000 and 100,000,000 from a normal distribution. We run 100,000 task 

sets and display their average values.  
 

 

Figure 5. NEC values against average Task Load 
 

In the first set of comparisons, we examine the performance of the relative computation amount of tasks to 

the deadline and the number of processors available in the system. To measure the relative computation 

amount of tasks to the deadline, we define the ratio of the completion time of given computation cycles 

under the maximum frequency of all kinds of processors to the deadline as Task Load, i.e., 100  Cm /(Dm ∙ 

fK). Here we do not consider the time delay and the extra energy required to change the frequency at runtime.  

Figure 5 shows NEC values against the average Task Load. As the average value of Task Load decreases, 

the energy saving effect of the proposed scheme increases. Also, as the number of given tasks increases, the 

energy saving effect increases. When the number of given tasks is 32 and the average Task Load is 5%, the 
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proposed scheme saves about 70% energy consumption of the previous method.  

In the second set of comparisons, we examine the number of activated processors among all available 

processors in the proposed scheme. Figure 6 shows the number of activated processors among all available 

processors. As the average value of Task Load decreases, the proposed scheme activates fewer processors 

while the previous method activates all available processors. From Figure 5 and Figure 6, it is verified that 

the proposed scheme saves more energy as the proposed scheme activates fewer processors among given 

available processors. 
 

 

Figure 6. Number of Activated Processors 

 

5. Conclusions 

The proposed scheduling scheme tries to minimize the energy consumption of real-time periodic tasks 

while their deadlines on a heterogeneous Grid computing system. The grid system consists of heterogeneous 

processors providing the DVFS mechanism with a finite set of discrete clock frequencies. In order to save 

energy consumption, the proposed scheduling scheme assigns each real-time task to a processor with the 

least energy increment. Also the scheme activates a part of all available processors with unused processors 

powered off. The proposed scheme is designed to find a near minimum-energy feasible schedule within a 

polynomial time, because the problem of minimizing the energy consumption of real-time tasks while 

meeting their deadline is NP-hard. Evaluation shows that the proposed scheme saves up to 70% energy 

consumption of the previous method. 
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