DOI QR코드

DOI QR Code

Edge effects confirmed at the clear-cut area of Korean red pine forest in Uljin, eastern Korea

  • Jung, Song Hie (Department of Bio and Environmental Technology, Graduate School of Seoul Women's University) ;
  • Lim, Chi Hong (Division of Ecological Assessment, National Institute of Ecology) ;
  • Kim, A Reum (Department of Bio and Environmental Technology, Graduate School of Seoul Women's University) ;
  • Woo, Dong Min (Department of Bio and Environmental Technology, Graduate School of Seoul Women's University) ;
  • Kwon, Hye Jin (Research Planning and Coordination, Korea National Arboretum) ;
  • Cho, Yong Chan (Plant Conservation Division, Korea National Arboretum) ;
  • Lee, Chang Seok (Division of Chemistry and Bio-Environmental Sciences, Seoul Women's University)
  • Received : 2017.07.12
  • Accepted : 2017.08.29
  • Published : 2017.10.31

Abstract

Background: Forest edges create distinctive ecological space as adjacent constituents, which distinguish between different ecosystems or land use types. These edges are made by anthropogenic or natural disturbance and affects both abiotic and biotic factors gradually. This study was carried out to assess edge effects on disturbed landscape at the pine-dominated clear-cut area in a genetic resources reserve in Uljin-gun, eastern Korea. This study aims to estimate the distance of edge influence by analyzing changes of abiotic and biotic factors along the distance from forest edge. Further, we recommend forest management strategy for sustaining healthy forest landscapes by reducing effects of deforestation. Results: Distance of edge effect based on the abiotic factors varied from 8.2 to 33.0 m. The distances were the longest in $Mg^{2+}$ content and total nitrogen, $K^+$, $Ca^{2+}$ contents, canopy openness, light intensity, air humidity, $Na^+$ content, and soil temperature followed. The result based on biotic factors varied from 6.8 to 29.5 m, coverage of tree species in the herb layer showed the longest distance and coverage of shrub plant in the herb layer, evenness, species diversity, total coverage of herb layer, and species richness followed. As the result of calculation of edge effect by synthesizing 26 factors measured in this study, the effect was shown from 11.0 m of the forest interior to 22.4 m of the open space. In the result of stand ordination, Rhododendron mucronulatum, R. schlippenbachii, and Fraxinus sieboldiana dominated arrangement of forest interior sites and Quercus mongolica, Vitis amurensis, and Rubus crataegifolius dominated spatial distribution of the open area plots. Conclusions: Forest interior habitat lies within the influence of both abiotic and biotic edge effects. Therefore, we need a forest management strategy to sustain the stability of the plant and further animal communities that depend on its stable conditions. For protecting forest interior, we recommend selective logging as a harvesting method for minimizing edge effects by anthropogenic disturbance. In fact, it was known that selective logging contributes to control light availability and wind regime, which are key factors affecting microclimate. In addition, ecological restoration applying protective planting for the remaining forest in the clear-cut area could contribute to prevent continuous disturbance in forest interior.

Keywords

References

  1. Alignier, A., Alard, D., Chevalier, R., & Corcket, E. (2014). Can contrast between forest and adjacent open habitat explain the edge effects on plant diversity? Acta Botanica Gallica., 161, 253-259. https://doi.org/10.1080/12538078.2014.902771
  2. Bekku, Y., Koizumi, H., Oikawa, T., & Iwaki, J. (1997). Examination of four methods for measuring soil respiration. Applied Soil Ecology, 5, 247-254. https://doi.org/10.1016/S0929-1393(96)00131-X
  3. Braun-Blanquet, J. (1964). Pflanzensoziologie, Grundzuge der Vegetationskunde (Dritte Auflage ed.). Wien-New York: Springer Verlag.
  4. Brower, J., & Zar, J. (1984). Community similarity. In B. R. O. W. E. R. JE & Z. A. R. JH (Eds.), Field & Laboratory for General Ecology Dubuque (pp. 161-164). Win C Brown Publishers.
  5. Chapman H. (1965) Cation-exchange capacity. Methods of soil analysis Part 2 Chemical and microbiological properties :891-901.
  6. Chen, J., Franklin, J. F., & Spies, T. A. (1993). Contrasting microclimates among clearcut, edge, and interior of old-growth Douglas-fir forest. Agricultural and Forest Meteorology, 63, 219-237. https://doi.org/10.1016/0168-1923(93)90061-L
  7. Cochrane, M. A., & Laurance, W. F. (2002). Fire as a large-scale edge effect in Amazonian forests. Journal of Tropical Ecology, 18, 311-325. https://doi.org/10.1017/S0266467402002237
  8. Davies-Colley, R., Payne, G., & Van Elswijk, M. (2000). Microclimate gradients across a forest edge. New Zealand Journal of Ecology, 111-121.
  9. Delgado, J. D., Arroyo, N. L., Arevalo, J. R., & Fernandez-Palacios, J. M. (2007). Edge effects of roads on temperature, light, canopy cover, and canopy height in laurel and pine forests (Tenerife, Canary Islands). Landscape and Urban Planning, 81, 328-340. https://doi.org/10.1016/j.landurbplan.2007.01.005
  10. Ewers, R. M., & Didham, R. K. (2006). Confounding factors in the detection of species responses to habitat fragmentation. Biological Reviews, 81, 117-142.
  11. Ewers, R. M., Thorpe, S., & Didham, R. K. (2007). Synergistic interactions between edge and area effects in a heavily fragmented landscape. Ecology, 88, 96-106. https://doi.org/10.1890/0012-9658(2007)88[96:SIBEAA]2.0.CO;2
  12. Gascon, C., Williamson, G. B., & da Fonseca, G. A. (2000). Receding forest edges and vanishing reserves. Science, 288, 1356-1358. https://doi.org/10.1126/science.288.5470.1356
  13. Gates, J. E., & Gysel, L. W. (1978). Avian nest dispersion and fledging success in field-forest ecotones. Ecology, 59, 871-883. https://doi.org/10.2307/1938540
  14. Geiger R. The Climate near the Ground, Cambr Mass; 1965.
  15. Harper, K. A., & Macdonald, S. (2011). Quantifying distance of edge influence: a comparison of methods and a new randomization method. Ecosphere., 2, 1-17.
  16. Harper, K. A., & Macdonald, S. E. (2001). Structure and composition of riparian boreal forest: new methods for analyzing edge influence. Ecology, 82, 649-659. https://doi.org/10.1890/0012-9658(2001)082[0649:SACORB]2.0.CO;2
  17. Harper, K. A., Lesieur D., Bergeron Y., & Drapeau P. (2004). Forest structure and composition at young fire and cut edges in black spruce boreal forest. Canadian Journal of Forest Research, 34(2), 289-302. https://doi.org/10.1139/x03-279
  18. Harper, K. A., Macdonald, S. E., Burton, P. J., Chen, J., Brosofske, K. D., Saunders, S. C., Euskirchen, E. S., Roberts, D., Jaiteh, M. S., & Esseen, P. A. (2005). Edge influence on forest structure and composition in fragmented landscapes. Conservation Biology, 19, 768-782. https://doi.org/10.1111/j.1523-1739.2005.00045.x
  19. Harper, K. A., Macdonald, S. E., Mayerhofer, M. S., Biswas, S. R., Esseen, P. A., Hylander, K., Stewart, K. J., Mallik, A. U., Drapeau, P., & Jonsson, B. G. (2015). Edge influence on vegetation at natural and anthropogenic edges of boreal forests in Canada and Fennoscandia. Journal of Ecology, 103, 550-562. https://doi.org/10.1111/1365-2745.12398
  20. Hur, T. C., & Joo, S. H. (2002). Comparison of Soil Physical and Chemical Properties between Coniferous and Deciduous forests in Mt. Palgong. Current Research on Agriculture and. Life Sciences, 20.
  21. Johnson, C. E., Johnson, A. H., & Siccama, T. G. (1991). Whole-tree clear-cutting effects on exchangeable cations and soil acidity. Soil Science Society of America Journal, 55, 502-508. https://doi.org/10.2136/sssaj1991.03615995005500020035x
  22. Johnson, P. S. (1977). Predicting oak stump sprouting and sprout development in the Missouri Ozarks. Dept. of Agriculture, Forest Service, North Central Forest Experiment Station.
  23. Keenan, R. J., & Kimmins, J. (1993). The ecological effects of clear-cutting. Environmental Reviews, 1, 121-144. https://doi.org/10.1139/a93-010
  24. Kim, J. S. (2010). Edge effects on vegetation and environment after clearcutting of Pinus densiflora forest Graduate school of science and technology.
  25. Kim, J. S. (2014). A Study on Stand Structure, Environmental factor and Understory vegetation for Variable Retention in Quercus mongolica Forest. Graduate school of science and technology.
  26. Korea Forest Service. (2007). The policies and the efficient cultivation plan for Pinus densiflora. Korea Forest Service.
  27. Korea Meteorological Administration. (2011). 2011 Annual climatological report. Korea Meteorological Administration.
  28. Krestov, P., Omelko, A. M., Ukhvatkina, O., & Nakamura, Y. (2015). Temperate summergreen forests of East Asia. Ber Reinhold-Tuxen-Ges., 27, 133-145.
  29. Kruskal, J. B. (1964). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29, 1-27. https://doi.org/10.1007/BF02289565
  30. Laurance, W. F., Ferreira, L. V., Rankin-de Merona, J. M., & Laurance, S. G. (1998). Rain forest fragmentation and the dynamics of Amazonian tree communities. Ecology, 79, 2032-2040. https://doi.org/10.1890/0012-9658(1998)079[2032:RFFATD]2.0.CO;2
  31. Laurance, W. F., Lovejoy, T. E., Vasconcelos, H. L., Bruna, E. M., Didham, R. K., Stouffer, P. C., Gascon, C., Bierregaard, R. O., Laurance, S. G., & Sampaio, E. (2002). Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conservation Biology, 16, 605-618. https://doi.org/10.1046/j.1523-1739.2002.01025.x
  32. Laurance, W. F., Nascimento, H. E., Laurance, S. G., Andrade, A., Ribeiro, J. E., Giraldo, J. P., Lovejoy, T. E., Condit, R., Chave, J., & Harms, K. E. (2006). Rapid decay of tree-community composition in Amazonian forest fragments. Proceedings of the National Academy of Sciences of the United States of America, 103, 19010-19014. https://doi.org/10.1073/pnas.0609048103
  33. Laurance, W. F., Williamson, G. B., Delamonica, P., Oliveira, A., Lovejoy, T. E., Gascon, C., & Pohl, L. (2001). Effects of a strong drought on Amazonian forest fragments and edges. Journal of Tropical Ecology, 17, 771-785. https://doi.org/10.1017/S0266467401001596
  34. Lee, C. B. (1985). Illustrated flora of Korea. Seoul: Hangmun Pub Co.
  35. Lee, R. (1978). Forest microclimatology. Columbia University Press.
  36. Lippok, D., Beck, S. G., Renison, D., Hensen, I., Apaza, A. E., & Schleuning, M. (2014). Topography and edge effects are more important than elevation as drivers of vegetation patterns in a neotropical montane forest. Journal of Vegetation Science, 25, 724-733. https://doi.org/10.1111/jvs.12132
  37. MacQuarrie, K., & Lacroix, C. (2003). The upland hardwood component of Prince Edward Island's remnant Acadian forest: determination of depth of edge and patterns of exotic plant invasion. Canadian Journal of Botany, 81, 1113-1128. https://doi.org/10.1139/b03-103
  38. MAPA MOdA. (1994). Tomo III. Ministerio de Agricultura, pesca, y Alimentacion Madrid, Ministerio de Agricultura, pesca, y Alimentacion Madrid.
  39. Margalef, R. (1958). Temporal succession and spatial heterogeneity in phytoplankton. University of California press.
  40. Marozas, V., Grigaitis, V., & Brazaitis, G. (2005). Edge effect on ground vegetation in clear-cut edges of pine-dominated forests. Scandinavian Journal of Forest Research, 20, 43-48. https://doi.org/10.1080/14004080510040986
  41. Matlack, G. R. (1993). Microenvironment variation within and among forest edge sites in the eastern United States. Biological Conservation, 66, 185-194. https://doi.org/10.1016/0006-3207(93)90004-K
  42. McCune, B., & Mefford, M. J. (1999). PC-ord.Multivariate analysis of ecological data, version 4.
  43. McDonald, R. I., & Urban, D. L. (2006). Edge effects on species composition and exotic species abundance in the North Carolina Piedmont. Biological Invasions, 8, 1049-1060. https://doi.org/10.1007/s10530-005-5227-5
  44. Ming, Z., Kim, J. S., Cho, Y. C., Bae, S. W., Yun, C. W., Byun, B. K., & Bae, K. H. (2013). Initial Responses of Understory Vegetation to 15% Aggregated Retention Harvest in Mature Oak (Quercus mongolica) Forest in Gyungsangbukdo. J Korean For Soc., 102, 239-246.
  45. Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31-36. https://doi.org/10.1016/S0003-2670(00)88444-5
  46. Palviainen, M., Finer, L., Kurka, A.-M., Mannerkoski, H., Piirainen, S., & Starr, M. (2004). Decomposition and nutrient release from logging residues after clearcutting of mixed boreal forest. Plant and Soil, 263, 53-67. https://doi.org/10.1023/B:PLSO.0000047718.34805.fb
  47. Park, S. G., Oh, G., & Sin, H. T. (2010). Effects of Light Condition on the Vegetation Restoration by Clear Cutting in a Larch Plantation. In Proceedings of the Korean Society of Environment and Ecology Conference. Korean Journal of Environment and Ecology.
  48. Park, Y. D., & Yoon, H. D. (1968). Geological Map of Korea (1: 50,000) - Uljin. Korea Institute of Geology, Mining, and Materials .
  49. Pielou, E. C. (1969). An introduction to mathematical ecology. An introduction to mathematical ecology.
  50. Pohlman, C. L., Turton, S. M., & Goosem, M. (2007). Edge effects of linear canopy openings on tropical rain forest understory microclimate. Biotropica, 39, 62-71. https://doi.org/10.1111/j.1744-7429.2006.00238.x
  51. Pykala, J. (2004). Immediate increase in plant species richness after clear-cutting of boreal herb-rich forests. Applied Vegetation Science, 7, 29-34. https://doi.org/10.1111/j.1654-109X.2004.tb00592.x
  52. Saunders, D. A., Hobbs, R. J., & Margules, C. R. (1991). Biological consequences of ecosystem fragmentation: a review. Conservation Biology, 5, 18-32. https://doi.org/10.1111/j.1523-1739.1991.tb00384.x
  53. Shannon, C. E., & Weaver, W. (1949). The mathematical theory of information.
  54. Suzuki, W. (1987). Comparative ecology of Rubus species (Rosaceae) I. ecological distribution and life history characteristics of three species, R. palmatus var. coptophyllus, R. microphyllus and R. crataegifolius. Plant Species Biology, 2, 85-100. https://doi.org/10.1111/j.1442-1984.1987.tb00035.x
  55. Toms, J. D., & Lesperance, M. L. (2003). Piecewise regression: a tool for identifying ecological thresholds. Ecology, 84, 2034-2041. https://doi.org/10.1890/02-0472
  56. Turton, S. M., & Freiburger, H. J. (1997). Edge and aspect effects on the microclimate of a small tropical forest remnant on the Atherton Tableland, northeastern Australia. University of Chicago Press.
  57. van Oijen, D., Feijen, M., Hommel, P., den Ouden, J., de Waal, R., & Hermy, M. (2005). Effects of tree species composition on within-forest distribution of understorey species. Applied Vegetation Science, 8, 155-166. https://doi.org/10.1658/1402-2001(2005)008[0155:EOTSCO]2.0.CO;2
  58. Wales, B. A. (1972). Vegetation Analysis of North and South Edges in a Mature Oak-Hickory Forest. Ecological Monographs, 42, 451-471. https://doi.org/10.2307/1942167
  59. Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37, 29-38. https://doi.org/10.1097/00010694-193401000-00003
  60. Wendel, G. (1975). Stump sprout growth and quality of several Appalachian hardwood species after clearcutting. U.S. Dept. of Agriculture, Forest Service, Northeastern Forest Experiment Station.
  61. Young, A., & Mitchell, N. (1994). Microclimate and vegetation edge effects in a fragmented podocarp-broadleaf forest in New Zealand. Biological Conservation, 67, 63-72. https://doi.org/10.1016/0006-3207(94)90010-8
  62. Zurita, G., Pe’er, G., Bellocq, M. I., & Hansbauer, M. M. (2012). Edge effects and their influence on habitat suitability calculations: a continuous approach applied to birds of the Atlantic forest. Journal of Applied Ecology, 49, 503-512. https://doi.org/10.1111/j.1365-2664.2011.02104.x

Cited by

  1. Factors that shape the elevational patterns of plant diversity in the Yatsugatake Mountains, Japan vol.11, pp.9, 2017, https://doi.org/10.1002/ece3.7397
  2. Identification of restoration species for early roadcut slope regeneration using functional group approach vol.29, pp.7, 2017, https://doi.org/10.1111/rec.13424