DOI QR코드

DOI QR Code

Experimental study on the ground subsidence due to the excavation of a shallow tunnel

경사지반에서 얕은터널의 굴착에 따른 지표침하에 대한 실험적 연구

  • Park, Chan Hyuk (Dept. of Civil and Transportation Sys. Eng., Ajou University) ;
  • Lee, Sang Duk (Dept. of Civil and Transportation Sys. Eng., Ajou University)
  • 박찬혁 (아주대학교 건설교통시스템공학과) ;
  • 이상덕 (아주대학교 건설교통시스템공학과)
  • Received : 2017.08.09
  • Accepted : 2017.09.07
  • Published : 2017.09.30

Abstract

The need of the underground space for the infrastructures in urban area is increasing, and especially the demand for shallow tunnels increased drastically. It is very important that the shallow tunnel in the urban area should fulfill not only its own safety conditions but also the safety condition for the adjacent structures and the surrounding sub-structure. Most of the studies on the behavior of shallow tunnels concentrated only on their behaviors due to the local deformation of the tunnel, such as tunnel crown or tunnel sidewall. However, few studies have been performed for the behavior of the shallow tunnel due to the deformation of the entire tunnel. Therefore, in this study the behavior of the surrounding ground and the stability caused by deformation of the whole tunnel were studied. For that purpose, model tests were performed for the various ground surface slopes and the cover depth of the tunnel. The model tunnel (width 300 mm, height 200 mm) could be simulationally deformed in the vertical and horizontal direction. The model ground was built by using carbon rods of three types (4 mm, 6 mm, 8 mm), in various surface slopes and cover depth of the tunnel. The subsidence of ground surface, the load on the tunnel crown and the sidewall, and the transferred load near tunnel were measured. As results, the ground surface subsided above the tunnel, and its amount decreased as the distance from the tunnel increased. The influence of a tunnel ceased in a certain distance from the tunnel. At the inclined ground surface, the wider subsidence has been occurred. The loads on the crown and the sidewall were clearly visible, but there was no effect of the surface slope at a certain depth. The load transfer on the adjacent ground was larger when the cover depth (on the horizontal surface) was lager. The higher the level (on the inclined surface), the wider and smaller it appeared. On the shallow tunnel under inclined surface, the transfer of the ambient load on the tunnel sidewall (low side) was clearly visible.

도시 내에서 기반시설을 확충하기 위해 지하공간의 활용이 급증하고 있으며, 이에 따라 얕은터널의 수요가 늘고 있다. 도시 내 얕은터널은 자체 안정성 뿐만 아니라 상부 건축물과 터널 주변 지중매설물의 안전성도 확보해야 하는 특성이 있다. 지금까지 얕은터널에 대한 연구는 천단부나 측벽부 등 국부적 변형에 따른 주변지반 거동에 집중되었고 터널 전체의 변형에 따른 주변지반의 거동을 연구한 예가 거의 없다. 따라서, 본 연구에서는 터널 전체의 변형에 의해 발생되는 주변지반 거동의 모형시험을 수행하여 분석하고 그 안정성을 검토하였으며, 이를 위해 터널 상부지표의 경사와 토피별로 구분하여 모형시험을 수행하였다. 모형터널(폭 300 mm, 높이 200 mm)은 도로 2차선 터널 단면을 기준으로 수직 수평방향으로 동시에 내공변위가 일어나도록 제작하였으며, 모형지반은 3가지 규격(직경 4 mm, 6 mm, 8 mm)의 탄소봉으로 조성하였고, 터널 전체를 변형시키면서 터널 토피와 상부지표의 경사에 따른 지표침하, 천단하중, 측벽하중, 하중전이를 측정하였다. 그 결과 얕은터널의 지표침하는 터널상부에서 가장 크게 발생하였고, 터널에서 멀어질수록 감소하여 일정영역을 벗어나면 발생하지 않았으며, 경사지에서는 토피가 높은 곳의 지표침하가 넓게 나타났다. 천단하중과 측벽하중은 지표경사의 영향이 뚜렷하였으나 토피가 일정깊이 이상이면 지표경사의 영향을 받지 않았다. 터널의 하중전이는 수평지표에서는 토피가 높을수록, 경사진 지표에서 지표가 높을수록 하중전이 폭이 넓고 크기가 작게 나타났으며, 경사진 지표 하부 얕은 터널에서는 토피가 낮은 쪽의 터널 측벽부 주변 하중전이가 뚜렷하게 나타났다.

Keywords

References

  1. Attewell, P.B., Gloosop, N.H., Farmer, I.W. (1978), "Ground deformations caused by tunneling in a silty alluvial clay", Ground Engineering.
  2. Choi, Y.J., Kang, S.G., Lee, S.D. (2012), "Experimental study on the ground subsidence induced by shallow tunneling in soft ground", KTA 2012 Symposium, Seoul, pp. 246-256.
  3. Clough, G.W., Schmidt, B. (1981), Design and performance of excavations and tunnels in soft clay. Soft Clay Engineering. Ed. by Brand E.W. and Brenner R.P.
  4. Cording, E.J., Hansmire, W.H. (1975), "Displacements around soft ground tunnels", Proc. 5th Pan American Conf. SMFE, Buenos Aires, pp. 571-633.
  5. Kim, J.H. (2002), "A study on the mutual relation between settlement and crown settlement due to tunnel excavation", pp. 64-66.
  6. Lee, S.D. (2013), "Tunnel mechanics", CIR publication, pp. 253-360.
  7. Terzaghi, K. (1946), "Introduction to tunnel geology", Rock Tunnelling with steel supports, Proctor and White, pp. 5-153.
  8. Terzaghi, K. (1948), "Theoretical soil mechanics", John Wiley & Sons.
  9. Gnilsen, R. (1989), Numerical Methods, Developments in Geotechnical Engineering. 59A, Underground Structures Design and Instrumentation, Elsevier, New York, pp. 84-128.
  10. Lee, S.D. (2014), "Soil mechanics", CIR publication, pp. 401-403.