DOI QR코드

DOI QR Code

고준위폐기물 처분시설 완충재의 온도변화에 따른 열물성

Thermal Properties of Buffer Material for a High-Level Waste Repository Considering Temperature Variation

  • 윤석 (한국원자력연구원 방사성폐기물처분연구부) ;
  • 김건영 (한국원자력연구원 방사성폐기물처분연구부) ;
  • 박태진 (한국원자력연구원 방사성폐기물처분연구부) ;
  • 이재광 (한국원자력연구원 방사성폐기물처분연구부)
  • Yoon, Seok (Radioactive Waste Disposal Research Division, KAERI) ;
  • Kim, Geon-Young (Radioactive Waste Disposal Research Division, KAERI) ;
  • Park, Tae-Jin (Radioactive Waste Disposal Research Division, KAERI) ;
  • Lee, Jae-Kwang (Radioactive Waste Disposal Research Division, KAERI)
  • 투고 : 2017.07.26
  • 심사 : 2017.10.11
  • 발행 : 2017.10.31

초록

완충재는 고준위폐기물을 처분하기 위한 공학적방벽 시스템에서 중요한 구성요소 중 하나이다. 완충재는 처분공내 사용후핵연료가 담긴 처분용기와 암반사이에 채워지는 물질로써 고준위폐기물의 안전한 처분을 위해 필수적인 요소라고 할 수 있다. 완충재는 지하수 유입으로부터 처분용기를 보호하고, 방사성 핵종 유출을 저지한다. 처분용기로부터 발생하는 고온의 열량은 완충재로 전파되기에 완충재의 열물성은 처분시스템의 안전성 평가에 매우 중요하다고 할 수 있다. 특히, 완충재의 설정온도는 고준위폐기물 처분시설의 설계에 큰 영향을 끼칠 수 있다. 따라서 본 연구에서는 온도변화에 따른 국내 경주산 압축 벤토나이트 완충재에 대한 열물성을 규명하고자 하였다. 열선법과 이중 탐침법을 이용하여 온도변화에 따른 압축 벤토나이트 완충재의 열전도도와 비열을 측정하였다. $22^{\circ}C$$110^{\circ}C$ 구간에서는 온도 증가에 따라 포화도가 변화되기에 열전도도와 비열은 급격하게 감소하는 경향을 보였으나 $110^{\circ}C$$150^{\circ}C$ 사이의 고온 구간에서는 열전도도와 비열의 추가 변화가 거의 발생하지 않았다.

The buffer is one of the major components of an engineered barrier system (EBS) for the disposal of high-level radioactive waste (HLW). As the buffer is located between a disposal canister and host rock, it is indispensable to assure the disposal safety of high-level radioactive waste. It can restrain the release of radionuclide and protect the canister from the inflow of groundwater. Since high quantity of heat from a disposal canister is released to the surrounding buffer, thermal properties of the buffer are very important parameters for the analysis of the entire disposal safety. Especially, temperature criteria of the compacted bentonite buffer can affect the design of HLW repository facility. Therefore, this paper investigated thermal properties for the Kyungju compacted bentonite buffer which is the only bentonite produced in South Korea. Hot wire method and dual probe method were used to measure thermal conductivity and specific heat capacity of the compacted bentonite buffer according to the temperature variation. Thermal conductivity and specific heat capacity were decreased dramatically when temperature variation was between $22^{\circ}C{\sim}110^{\circ}C$ as degree of saturation decreased according to the temperature variation. However, there was little variation under the high temperature condition at $110^{\circ}C{\sim}150^{\circ}C$.

키워드

참고문헌

  1. ASTM C1113/C1113M-09, "Standard Test Method for Thermal Conductivity of Refractories by Hot Wire (platinum resistance thermometer technique)", ASTM International.
  2. ASTM D2216-10, "Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass, ASTM International.
  3. Bristow, K. L., White, R. D., and Klutenberg, G. J. (1994), "Comparison of Single and Dual Probes for Measuring Soil Thermal Properties with Transient Heating", Australian Journal of Soil Research, Vol.32, pp.447-467. https://doi.org/10.1071/SR9940447
  4. Cho, W. J., Chun, K. S., Lee, J. O., and Kang, M. J. (1997), "Analysis of Functional Criteria for Buffer Material in the Highlevel Waste Repository", KAERI/TR-933/97.
  5. Cho, W. J. and Kim, G. Y. (2016), "Reconsideration of Thermal Criteria for Korea Spent Fuel Repository", Annals of Nuclear Energy, Vol.88, pp.73-82. https://doi.org/10.1016/j.anucene.2015.09.012
  6. Choi, H. J., Kim, K. S., CHo, W. J., Lee, J. O., and Choi, J. W. (2014), "HLW Long-term Management System Development: Development of Engineered Barrier System Performance", Korea Atomic Energy Research Institute Report, KAERI/TR-3859.
  7. JNC. (2000), "H12 Project to Establish Technical Basis for HLW Disposal in Japan, Suport Report 2. Japan Nuclear Cycle Development Institute.
  8. Karnland, O. (2010), "Chemical and Mineralogical Characterization of the Bentonite Buffer for the Acceptance Conctrol Procedure in a KBS-3 Repository", Svensk Karn-branslehantering AB Report, SKB TR-10-60.
  9. Lee, J. O., Cho, W. J., and Kwon, S. (2011), "Thermal-hydromechanical Properties of Refernece Bentonite Buffer for a Korean HWLW Repository", Tunnel and Underground Space, Vol.21, No. 4, pp.264-273.
  10. Lee, J. O., Lee, M, S., Choi, H. J., Lee, J. Y., and Kim, I. Y. (2014), "Establishment of the Concept of Buffer for an HLW Repository: An Approach", Korea Atomic Energy Research Institute Report, KAERI/TR-5824.
  11. Lee, J. O., Choi, H. J., and Lee, J. Y. (2016), "Thermal Conductivity of Compacted Bentonite as a Buffer Material for a High-level Radioactive Waste Repository", Annals of Nuclear Energy, Vol. 94, pp.848-855. https://doi.org/10.1016/j.anucene.2016.04.053
  12. Lee, J. Y., Cho, D. K., Choi, H. J., and Choi, J. W. (2007), "Concept of a Korean Reference Disposal System for Spent Fuels", Journal of Nuclear Science and Technology, Vol.44, No.12, pp. 1565-1573. https://doi.org/10.1080/18811248.2007.9711407
  13. Lee, M. S., Choi, H. J., Lee, J. O., and Lee, J. P. (2013), "Improvement of the Thermal Conductivity of a Compact Bentonite Buffer", Korea Atomic Energy Research Institute Report, KAERI/TR-5311.
  14. Madsen, F. T. (1988), "Clay Mineralogical Investigations Related to Nuclear Waste Disposal", Clay Minerals, Vol.33, No.1, pp. 109-129. https://doi.org/10.1180/claymin.1998.033.1.11
  15. Tang, A. M., Cui, Y, J., and Le, T. T. (2008), "A Study on the Thermal Conductivity of Compacted Bentonite", Applied Clay Science, Vol.41, pp.181-189. https://doi.org/10.1016/j.clay.2007.11.001
  16. Villar, M. V., Martin, P. L., and Barcala, J. M. (2006), "Modification of Physical, Mechanical and Hydraulic Properties of Bentonite by Thermo-hydraulic Gradients", Engineering Geology, Vol.81, pp. 284-297.
  17. Wang, Min., Chen, Y, F., Zhou, Song., Hu, Ran., and Zhou, C. B. (2015), "A Homogenization-based Model for the Effective Thermal Conductivity of Bentonite-sand-based Buffer Material", International Communications in Heat and Mass Transfer", Vol. 68, pp.43-49. https://doi.org/10.1016/j.icheatmasstransfer.2015.08.007
  18. Wersin, P., Johnson, L. H., and Snellman, M. (2006), "Impact of Iron Released from Steel Components on the Performance of the Bentonite Buffer: A Preliminary Assessment Within the Framework of the KBS-3H Disposal Concept, Materials Research Society Symposium Proceedings, Vol.932, pp.95-102.
  19. Yoo, M., Choi, H. J., Lee, M. S., and Lee, S. Y. (2016), "Measurement of Properties of Domestic Bentonite for a Buffer of an HLW Repository", Journal of the Korean Radioactive Waste Society, Vol.14, No.2, pp 135-147. https://doi.org/10.7733/jnfcwt.2016.14.2.135
  20. Yoon, S., Lee, S. R., Kim, Y. S., Kim, G. Y., and Kim, K. (2016), "Prediction of Ground Thermal Properties from Thermal Response Test", Journal of the Korean Geotechnical Society, Vol.32, No.7, pp.5-14. https://doi.org/10.7843/KGS.2016.32.7.5
  21. Yoon S., Lee, M. S., Kim, G. Y., Lee, S. R., and Kim, M. J. (2017), "A Prediction of Thermal Conductivity for Compacted Bentonite Buffer in the High-level Radioactive Waste Repository", Journal of the Korean Geotechnical Society, Vol.33, No.7, pp. 55-64. https://doi.org/10.7843/KGS.2017.33.7.55