DOI QR코드

DOI QR Code

Groundwater Flow and Water Budget Analyses using HydroGeoSphere Model at the Facility Agricultural Complex

시설농업단지에서 HydroGeoSphere 모델을 이용한 지하수 유동 및 물수지 분석

  • Kang, Dong-hwan (Environmental Research Institute, Pukyong National University) ;
  • So, Yoon Hwan (Environmental Research Institute, Pukyong National University) ;
  • Kim, Il Kyu (Department of Environmental Engineering, Pukyong National University) ;
  • Oh, Se-bong (Gyeongnam Regional Headquarter, Korea Rural Community Corporation) ;
  • Kim, Suhong (Gyeongnam Regional Headquarter, Korea Rural Community Corporation) ;
  • Kim, Byung-Woo (K-water Convergence Institute, Korea Water Resources Corporation)
  • 강동환 (부경대학교 환경연구소) ;
  • 소윤환 (부경대학교 환경연구소) ;
  • 김일규 (부경대학교 환경공학과) ;
  • 오세봉 (한국농어촌공사 경남지역본부) ;
  • 김수홍 (한국농어촌공사 경남지역본부) ;
  • 김병우 (K-water융합연구원 물환경연구소)
  • Received : 2017.08.28
  • Accepted : 2017.09.24
  • Published : 2017.09.30

Abstract

The purpose of this study is to estimate the surface and subsurface flows through the modelling of the model area and facility agricultural complex, and to calculate the groundwater recharge rate through water budget analysis. From results of surface flow modeling, the surface water is flowed to a depth of about 1 to 5 meters from the upper region (northeast) to the lower region (southeast) of the Miryang River. At the M01 point (upper), the observed surface water flux and the model surface water flux are consistent. At the M02 points (lower), the observed surface water flux and the model surface water flux are a difference of 1%. From results of subsurface flow modeling, the depth of groundwater is similar to elevation in the river and higher to the forest area. Ground water depth considering groundwater pumping is that the model values appears higher than the observed values to be within 1.5 m. From results of surface-subsurface integrated modeling, the groundwater recharge area is estimated about 90% of the model area, and the groundwater recharge rate is estimated $1.92{\times}10^5m^3/day$. From results of annual water budget analysis, the groundwater recharge rate per unit area is estimated to be 503.9 mm/year, and average annual rainfall is estimated at around 39%.

본 연구의 목적은 지표수-지하수 통합 모델을 통해 모델 영역과 시설농업단지(밀양들)의 지표수/지하수 유동을 모의하고 모델 영역의 물수지 분석을 통해 지하수 함양량을 산정하는 것이다. 지표수 유동 모델 결과에서는 밀양강 상류(북동쪽)에서 하류(남동쪽)로 약 1~5 m의 수심으로 지표수가 유동하고 있으며, 모델지역 상류의 M01 지점에서는 지표수 유량 관측값과 모델값이 일치하고, 모델지역 하류의 M02 지점에서의 지표수 유량은 1% 정도의 차이를 보인다. 지하수 유동 모델에서는 지하수 심도가 하천에서는 표고와 유사하며 산림 지역으로 갈수록 높아지고, 지하수 양수를 고려한 지하수 심도는 모델값이 관측값보다 1.5 m이내의 범위로 높게 나타난다. 지표수-지하수 통합모델에서는 지하수의 함양 면적이 모델 면적의 90% 정도이고, 지하수 함양량은 $1.92{\times}10^5m^3/day$인 것으로 나타난다. 연평균 물수지 분석에서는 단위 면적당 지하수 함양량이 503.9 mm/year로서 연평균 강우량의 39% 정도로 추정된다.

Keywords

References

  1. Allen, R. G., Pereira L. S., Raes D., and Smith M., 1998, Crop evapotranspiration-guidelines for computing crop water requirements, FAO irrigation and drainage paper 56, FAO, ISBN 92-5-104219-5.
  2. Chang, S. W. and Chung, I. M., 2014, Analysis of groundwater variations using the relationship between groundwater use and daily minimum temperature in a water curtain cultivation site, The Journal of Engineering Geology, 24(2), 217- 225 (in Korean with English abstract). https://doi.org/10.9720/kseg.2014.2.217
  3. Chang, S. W. and Chung, I. M., 2015, An analysis of groundwater budget in a water curtain cultivation site, Journal of the Korean Society of Civil Engineers, 35(6), 1259-1267 (in Korean with English abstract). https://doi.org/10.12652/Ksce.2015.35.6.1259
  4. Chung, I. M., Na, H. N., Lee, D. S., Kim, N. W., Lee, J. W., and Lee, J. M., 2011, Spatio-temporal variations in groundwater recharge in the Jincheon region, The Journal of Engineering Geolory, 21(4), 305-312 (in Korean with English abstract). https://doi.org/10.9720/kseg.2011.21.4.305
  5. Cornelissen, T., Diekkrger, B., and Bogenab, H., 2013, Using HydroGeoSphere in a forested catchment: How does spatial resolution influence the simulation of spatio-temporal soil moisture variability?, Procedia Environmental Sciences 19 (2013), 198-207. https://doi.org/10.1016/j.proenv.2013.06.022
  6. Graf, T. and Therrien, R., 2009, Stable-unstable flow of geothermal fluids in fractured rock, Geofluids (2009) 9, 138-152. https://doi.org/10.1111/j.1468-8123.2008.00233.x
  7. Hwang, H. T., Park Y. J., Sudicky, E. A., and Forsyth, P. A., 2014, A parallel computational framework to solve flow and transport in integrated surface-subsurface hydrologic systems, Environmental Modelling & Software 61 (2014), 39-58. https://doi.org/10.1016/j.envsoft.2014.06.024
  8. Hwang, H. T., Park, Y. J., Frey, S. K., Berg, S. J., and Sudicky, E. A., 2015, A simple iterative method for estimating evapotranspiration with integrated surface/subsurface flow models, Journal of hydrology, 531, 949-959. https://doi.org/10.1016/j.jhydrol.2015.10.003
  9. Kim, C. G, Kim, H. J, Jang, C. H, and Im, S. J., 2005, Integrated surface and groundwater modeling for the Gyeongancheon watershed, Korean Society of Civil Engineers 2005 annual academic meeting, 161-164.
  10. Kim, J. T., Kim, M. I., Chung, I. M., Kim, N. W., and Jeong, G. C., 2009, An analysis of groundwater level fluctuation caused by construction of groundwater dam, The Journal of Engineering Geology, 19(2), 227-233 (in Korean with English abstract).
  11. Kim, K. B. and Hwang, S. K., 1988, Geological report of the Miryang sheet (1:50,000), Korea Institute of Energy and Resources, Seoul.
  12. Kim, N. W., Chung, I. M., and Na, H. N., 2015, An integrated water budget analysis of Oedocheon watershed in Jeju island, Journal of Environmental Science International, 24(4), 471-480 (in Korean with English abstract). https://doi.org/10.5322/JESI.2015.24.4.471
  13. Kim, N. W., Chung, I. M., and Won, Y. S., 2004a, The development of fully coupled SWAT-MODFLOW model (I) Model development, The Journal of Korea Water Resources Association, 37(6), 499-507 (in Korean with English abstract). https://doi.org/10.3741/JKWRA.2004.37.6.499
  14. Kim, N. W., Chung, I. M., and Won, Y. S., 2006, An integrated surface water-groundwater modeling by using fully combined SWAT-MODFLOW model, Journal of the Korean Society of Civil Engineers, 26(5B), 481-488.
  15. Kim, N. W., Lee, J. W., Chung, I. M., and Kim, C. H., 2012, Change of groundwater-stream flow interaction according to groundwater abstraction in a green house land, Journal of Korea Water Resources Association, 45(10), 1051-1067 (in Korean with English abstract). https://doi.org/10.3741/JKWRA.2012.45.10.1051
  16. Kollet, S. J. and Maxwell, R. M., 2006, Integrated surfacegroundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model, Advances in Water Resources 29, 945-958. https://doi.org/10.1016/j.advwatres.2005.08.006
  17. Korea Rural Community Corporation Gyeongnam Regional Headquarter, 2014, Hydrogeological investigation reports of Miryang field, 53p.
  18. Lee, E. H., Hyun, Y. J., Lee, K. K., Kim, H. S., and Jeon, J. H., 2010, Evaluation of well production by a riverbank filtration facility with radial collector well system in Jeungsan-ri, Changnyeong-gun, Korea, J. Soil & Groundwater Env., 15(4), 1-12 (in Korean with English abstract).
  19. Park, K. D., Shin, D. S., Yang, D. S., Lee, I. J., Lim, Y. K., and Kim, I. K., 2017, Simulation of the route of 4-Nitrophenol in the Geumho river and analysis of the impact of potential contamination sources using a numerical model, Journal of Environmental Science International, 26(2), 211-220 (in Korean with English abstract). https://doi.org/10.5322/JESI.2017.26.2.211
  20. Shin, J. Y. and Lee, K. K., 2006, Simulation for the effect of vertical groundwater flux on the subsurface temperature distribution, Korean Society of Soil and Groundwater Environment 2006 spring meeting, 383-386.
  21. Shin, J. Y., Bae, G. O., and Lee, K. K., 2006, Numerical simulation for the subsurface temperature distribution disturbed by heat-pump operation, The Korean Society for New and Renewable Energy 2006 fall meeting, 40-43.