DOI QR코드

DOI QR Code

지하투과레이더 신호의 보정을 통한 도심지 내 지반 이상구간의 검측

Detection of Abnormal Area of Ground in Urban Area by Rectification of Ground Penetrating Radar Signal

  • 강성훈 (고려대학교 건축사회환경공학부) ;
  • 이종섭 (고려대학교 건축사회환경공학부) ;
  • 이성진 (한국철도기술연구원 광역도시교통연구본부) ;
  • 이진욱 (한국철도기술연구원 광역도시교통연구본부) ;
  • 홍원택 (고려대학교 건축사회환경공학부)
  • Kang, Seonghun (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Lee, Jong-Sub (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Lee, Sung Jin (Metropolitan Transportation Research Center, Korea Railroad Research Institute) ;
  • Lee, Jin Wook (Metropolitan Transportation Research Center, Korea Railroad Research Institute) ;
  • Hong, Won-Taek (School of Civil, Environmental and Architectural Engineering, Korea University)
  • 투고 : 2017.07.26
  • 심사 : 2017.09.25
  • 발행 : 2017.09.30

초록

도심지 내 지반침하는 공동의 생성 및 체적함수비의 급격한 변화에 의하여 발생할 수 있는 것으로 알려져 있다. 본 연구에서는 보정 기법이 적용된 지하투과레이더 신호를 이용하여 도심지 내 공동 및 체적함수비의 급격한 변화가 발생한 지반 이상 구간을 검측하고자 하였다. 지반 이상구간에 대한 신호 획득을 위하여 구형의 공동을 모사한 모형지반을 대상으로 지하투과레이더 탐사를 수행하였다. 필터링 기법을 적용하여 설정한 대역폭을 통과하는 신호만을 측정하였으며, 이후 이득 함수, 타임 제로, 배경 제거, 디콘볼루션, 영상 이득 기법을 적용하고 각 기법의 적용에 따른 신호의 변화양상을 비교하였다. 신호처리 및 영상화 기법을 적용한 결과, 공동 발생 구간의 전기적 임피던스 대소관계에 부합하는 위상이 나타났다. 지하투과레이더 측정 신호를 이용하여 산정한 상대 유전율과 모형지반의 체적함수비를 이용하여 예측한 상대 유전율을 비교한 결과, 각 방법으로 도출된 상대 유전율은 서로 유사한 값을 보였다. 이를 통하여 도심지와 같이 매설물의 깊이가 알려져 있는 경우, 보정된 지하투과 레이더 신호를 통하여 체적함수비의 급격한 변화 구간 또한 검측할 수 있을 것이라 판단된다. 본 연구에서 제시된 신호의 보정 기법과 상대 유전율의 산정은 도심지 내 공동 발생 구간 및 체적함수비의 급격한 변화 구간과 같은 이상구간 검측에 활용될 수 있을 것으로 판단된다.

The subsidence of ground in urban area can be caused by the occurrence of the cavity and the change in ground volumetric water content. The objective of this study is the detection of abnormal area of ground in urban area where the cavity or the change in ground volumetric water content is occurred by the ground penetrating radar signal. GPR survey is carried out on the test bed with a circular buried object. From the GPR survey, the signals filtered by the bandpass filtering are measured, and the methods consisting of gain function, time zero, background removal, deconvolution and display gain are applied to the filtered signals. As a result of application of the signal processing methods, the polarity of signal corresponds with the relation of electrical impedance of the cavity and the ground in test bed. In addition, the relative permittivity calculated by GPR signal is compared with that of predicted by volumetric water content of the test bed. The relative permittivities obtained from two different methods show similar values. Therefore, the abnormal area where the change in ground volumetric water content is occurred can be detected from the results of the GPR survey in case the depth of underground utilities is known. Signal processing methods and estimation of relative permittivity performed in this study may be effectively used to detect the abnormal area of ground in urban area.

키워드

참고문헌

  1. ASTM D6432 (2011), Standard guide for using the surface ground penetrating radar method for subsurface investigation, Annual Book of ASTM Standard 04.09, ASTM International, West Conshohocken, PA.
  2. Blitz, J. and Simpson, G. (1995), Ultrasonic methods of nondestructive testing, Springer Science & Business Media, 264.
  3. Daniels, D. J. (2004), Ground penetrating radar, Iet, 726.
  4. Davis, J. L. and Annan, A. P. (1989), Ground penetrating radar for high resolution mapping of soil and rock stratigraphy, Geophysical Prospecting, 37(5), 531-551. https://doi.org/10.1111/j.1365-2478.1989.tb02221.x
  5. Geophysical Survey Systems, Inc. (2005), GSSI handbook for RADAR inspection of concrete, GSSI, 38.
  6. Geophysical Survey Systems, Inc. (2012), RADAN 7, GSSI, 133.
  7. Hong, W. T., Kang, S., and Lee, J. S. (2015), Application of ground penetrating radar for estimation of loose layer, Journal of the Korean Geotechnical Society, 31(11), 41-48. https://doi.org/10.7843/KGS.2015.31.11.41
  8. Jol, H., M. (2008), Ground penetrating radar theory and applications, Elsevier, 544.
  9. Kim, Y. J., Lee, S. S., Ahn, B. Y., and Kim, Y. G. (2000), Examination on the influence of depth, size and interval of rebar on the signal of ground penetrating radar, Journal of the Korea Institute for Structural Maintenance Inspection, 4(2), 167-174.
  10. Lichtenecker, K. (1926), Dielectric constant of natural and synthetic mixtures, Phys. Z, 27, 115.
  11. Perez-Gracia, V., Di Capua, D., Gonzalez-Drigo, R., Caselles, O., Pujades, L. G., and Salinas, V. (2010), GPR resolution in cultural heritage applications. In ground penetrating radar (GPR), 2010 13th International Conference on. IEEE, 1-5.
  12. Rial, F. I., Lorenzo, H., Pereira, M., and Armesto, J. (2009), Waveform analysis of UWB GPR antennas, Sensors, 9(3), 1454-1470. https://doi.org/10.3390/s90301454
  13. Rodriguez, V., Gutierrez, F., Green, A. G., Carbonel, D., Horstmeyer, H., and Schmelzbach, C. (2014), Characterizing sagging and collapse sinkholes in a mantled karst by means of ground penetrating radar (GPR), Environmental & Engineering Geoscience, 20(2), 109-132. https://doi.org/10.2113/gseegeosci.20.2.109
  14. Santamarina, J. C., Klein, A., and Fam, M. A. (2001), Soils and waves-particulate materials behavior, characterization and process monitoring, John Wiley and Sons, NY, 448.
  15. Schaubert, D., Kollberg, E., Korzeniowski, T., Thungren, T., Johansson, J., and Yngvesson, K. (1985), Endfire tapered slot antennas on dielectric substrates", IEEE Transactions on Antennas and Propagation, 33(12), 1392-1400. https://doi.org/10.1109/TAP.1985.1143542
  16. Topp, G. C., Davis, J. L., and Annan, A. P. (1980), Electromagnetic determination of soil water content: Measurements in coaxial transmission lines, Water Resources Research, 16(3), 574-582. https://doi.org/10.1029/WR016i003p00574
  17. Viriyametanont, K., Laurens, S., Klysz, G., Balayssac, J. P., and Arliguie, G. (2008), Radar survey of concrete elements: effect of concrete properties on propagation velocity and time zero, NDT & E International, 41(3), 198-207. https://doi.org/10.1016/j.ndteint.2007.10.001
  18. Waltham, T., Bell, F. G., and Culshaw, M. (2007), Sinkholes and subsidence: karst and cavernous rocks in engineering and construction, Springer Science & Business Media, 384.
  19. Yelf, R. (2004), Where is true time zero?, Proceedings of the Tenth International Conference on. Vol. 1. IEEE, 279-282.