DOI QR코드

DOI QR Code

현장규모 대형 배양장치에서 식물플랑크톤의 월동 및 천이

Overwintering and Succession of the Phytoplankton in Pilot Culture System

  • 노성유 (국립환경과학원 유역생태연구팀) ;
  • 이경락 (국립환경과학원 유역생태연구팀) ;
  • 신유나 (국립환경과학원 유역생태연구팀) ;
  • 이재윤 (국립환경과학원 유역생태연구팀) ;
  • 송미애 (국립환경과학원 유역생태연구팀) ;
  • 이재안 (국립환경과학원 유역생태연구팀) ;
  • 류덕희 (국립환경과학원 물환경평가연구과) ;
  • 이재관 (국립환경과학원 물환경연구부)
  • Noh, Seongyu (Watershed Ecology Research Team, National Institute of Environmental Research) ;
  • Lee, Kyung-Lak (Watershed Ecology Research Team, National Institute of Environmental Research) ;
  • Shin, Yuna (Watershed Ecology Research Team, National Institute of Environmental Research) ;
  • Lee, Jaeyoon (Watershed Ecology Research Team, National Institute of Environmental Research) ;
  • Song, Mi-Ae (Watershed Ecology Research Team, National Institute of Environmental Research) ;
  • Lee, Jaean (Watershed Ecology Research Team, National Institute of Environmental Research) ;
  • Rhew, Doughee (Water Quality Assessment Research Division, National Institute of Environmental Research) ;
  • Lee, Jaekwan (Water Environment Research Department, National Institute of Environmental Research)
  • 투고 : 2016.11.17
  • 심사 : 2017.03.29
  • 발행 : 2017.03.31

초록

본 연구는 2016년 2월 23일부터 6월 28일까지 현장규모대형 배양장치(Pilot Culture System)에서 환경요인의 영향에 따른 저층 침전현상 및 겨울철 월동 이후 조류 군집 천이 특성에 대해 연구하였다. 겨울(2월)에 실험군에서 남조류, 녹조류 및 규조류 총 17종의 월동(overwintering)이 관찰되었으며, 월동한 식물플랑크톤은 재부유 이후 뚜렷한 천이양상을 보였다. 식물플랑크톤 천이 과정에는 총 28속 56종 출현하였다. 실험군에서는 총 24속 52종이 출현하였으며 분류군별로는 녹조류가 35종(67.3%)으로 가장 높았고 규조류 9종(17.3%), 남조류 5종(9.6%), 기타조류 3종(5.8%) 순으로 나타났다. 대조군에서는 총 14속 25종이 출현하였고 녹조류가 17종(68.0%)으로 가장 높은 비율을 차지하였으며, 그 외 남조류와 기타조류는 각 3종(12.0%), 규조류 2종(8.0%)으로 나타났다. 식물플랑크톤 현존량은 실험군에서 $40{\sim}325,450cells\;mL^{-1}$, 대조군에서 $900{\sim}37,100cells\;mL^{-1}$로 실험군보다 대조군에서 매우 낮은 현존량 차이를 보였다. 우점종은 실험군에서는 Monoraphidium minutum, Microcystis aeruginosa, Rhodomonas lacustris, Ankyra judai, Chlorella vulgaris가, 대조군에서는 M. minutum, Coenochloris cf. pyrenoidosa가 천이과정에서 주요 우점종으로 확인되었다. 실험군에서의 식물플랑크톤 천이양상은 뚜렷하게 확인되었으며, 이화학적(수온, 영양염) 및 생물학적 요인 간의 명확한 영향을 받는 것으로 확인되었다. 반면 대조군에서는 이화학적 요인인 영양염의 영향을 크게 받는 것으로 확인되었다. 결론적으로 이번 연구는 외부유입 요인들이 배제된 상태에서 수체 내 주요 분류군의 월동 및 천이가 내부 환경요인의 상호작용만으로 발생할 수 있음을 잘 보여주었으며 향후 식물플랑크톤 천이양상을 이해하는 기초자료로 활용될 것으로 기대된다.

Overwintering and succession of phytoplankton community with physicochemical and biological characteristics were investigated in pilot culture system. Water and phytoplankton samples were collected twice a week from February 23 to June 28, 2016. A total of 17 overwintering taxa including cyanophyceae, chlorophyceae, bacillariophyceae were identified in the experimental group in winter (February), and these overwintering species showed a marked succession pattern along with environment changes. In the process of phytoplankton succession, a total of 56 species in 28 genera were identified in two (experimental, control) pilot culture system. In the experimental group, 52 phytoplankton species in 24 genera were identified, and the number of taxa was highest in chlorophyceae (35 species), followed by Bacillariophyceae (9 species), Cyanophyceae (5 species) and others (3 species). In the control group, 25 phytoplankton species in 14 genera were classified and these taxa consisted of 17 chlorophyceae, 3 cyanophyceae, 2 Bacillariophyceae and 3 others. The standing crops ranged from 40 to $325,450cells\;mL^{-1}$ in the experimental group, and from 900 to $37,100cells\;mL^{-1}$ in the control group, respectively. The dominant species were represented by Monoraphidium minutum, Microcystis aeruginosa, Rhodomonas lacustris, Ankyra judai and Chlorella vulgaris in the experimental group; and M. minutum and Coenochloris cf. pyrenoidosa in the control group. In conclusion, overwintering and succession of predominant phytoplankton species developed due to interactions of internal environmental factors(physicochemical and biological factors) in the pilot culture system.

키워드

참고문헌

  1. Bailey-Watts, A.E. 1988. Studies on the control of the early spring diatom maximum in Loch Leven 1981, p. 53-87. In: Essays in phycology: algae and the aquatic environment (Round, E.F., ed.). Briopress.
  2. Balcer, M.D., N.L. Korda and S.I. Dodson. 1984. Zooplankton of the great lakes-a guide to the identification and ecology of the common crustacean species. The University of Wisconsin Press, England.
  3. Cho, G.S. 1993. Illustration of the fresh water zooplankton of Korea. Academy Publishing Company, Korea.
  4. Dawidowicz, P. 1990. Effectiveness of phytoplankton control by large-bodied and small- bodied zooplankton. Hydrobiologia 200(1): 43-47. https://doi.org/10.1007/BF02530327
  5. den Oude, P.J. and R.D. Gulati. 1988. Phosphorus and nitrogen excretion rates of zooplankton from the eutrophic Loosdrecht lakes, with notes on other P sources for phytoplankton requirements. Hydrobiologia 169(3): 379-390. https://doi.org/10.1007/BF00007561
  6. Elliot, J.A., C.S. Reynolds, A.E. Irish and P. Tett. 1999. Exploring the potential of the PROTECH model to investigate phytoplankton community theory. Hydrobiologia 414: 37-43. https://doi.org/10.1023/A:1003843815896
  7. Ganf, C.G. and P. Blazka. 1974. Oxygen uptake, ammonia and phosphate excretion by zooplankton of a shallow equatorial lake (Lake George, Uganda). Association for the Sciences of Limnology and Oceanography 19(2): 313-325. https://doi.org/10.4319/lo.1974.19.2.0313
  8. Graham, L.E., J. Graham and L.W. Wilcox. 2009. Algae, 2nd Ed. Pearson education, San Francisco, USA.
  9. George, D.G. and C.S. Reynolds. 1997. Zooplankton-phytoplankton interactions: the case for refining methods, measurements and models. Aquatic Ecology 31(1): 59-71. https://doi.org/10.1023/A:1009920214357
  10. Grover, J.P. and T.H. Chrzanowski. 2006. Seasonal dynamics of phytoplankton in two warm temperate reservoirs: association of taxonomic composition with temperature. Journal of Plankton Research 28(1): 1-17. https://doi.org/10.1093/plankt/fbi095
  11. Gulati, R.D., C.P. Martinez and K. Siewertsen. 1995. Zooplankton as a compound mineralizing and synthesizing system: phosphorus excretion. Hydrobiologia 315(1): 25-37. https://doi.org/10.1007/BF00028628
  12. Hargrave, B.T. and G.H. Green. 1968. Phosphorus excretion by zooplankton. Association for the Sciences of Limnology and Oceanography 13(2): 332-342. https://doi.org/10.4319/lo.1968.13.2.0332
  13. Horne, A.J. and C.R. Goldman. 1994. Limnology, p. 576. McGraw-Hill, Inc., New York.
  14. Hutchinson, G.E. 1967. A Treaties on Limnology. Vol 2. John Willey & Sons, Inc., New York.
  15. Hutchinson, G.E. and Y.H. Edmondson. 1957. A Treatise on limnology: introduction to lake biology and the limnoplankton. Wiley, New York.
  16. Izaguirre, I. and A. Vinocur. 1994. Algal assemblage from shallow lakes of the Salado River Basin (Argentina). Hydrobiologia 289: 57-64. https://doi.org/10.1007/BF00007408
  17. Izaguirre, I., M.L. Sanchez, M.R. Schiaffino, I. O'Farrell, P. Huber, N. Ferrer, J. Zunino, L. Lagomarsino and M. Mancini. 2015. Which environmental factors trigger the dominance of phytoplankton species across a moisture gradient of shallow lakes? Hydrobiologia 752(1): 47-64. https://doi.org/10.1007/s10750-014-2007-1
  18. John, D.M., B.A. Whitton and A.J. Brook. 2011. The freshwater algal flora of the british isles-an identification guide to freshwater and terrestrial algae second edition. Cambridge University Press, New York.
  19. Jung, J. 1993. Illustration of the freshwater algae of Korea. Academy Publishing Company, Korea.
  20. Kim, H.W., K.H. Chang, K.S. Jeong and G.J. Joo. 2003. The spring metazooplankton dynamics in the river-reservoir hybrid system (Nakdong River, Korea): Its role in controlling the phytoplankton biomass. Korea Journal of Limnology 36(4): 420-426.
  21. Lampart, W. 1982. Further studies on the inhibitory effect of the toxic blue-green Microcystis aeruginosa on the filtering rate of zooplankton. Archivfür Hydrobiologie 95: 207-220.
  22. Latour, D. and H. Giraudet. 2004. Factors influencing the spatiotemporal distribution of benthic Microcystis aeruginosa colonies (Cyanobacteria) in the hypertrophic Grangent Reservoir (Loire, France). Comptes Rendus Biologies 327(8): 753-761. https://doi.org/10.1016/j.crvi.2004.07.003
  23. McNaughton, S.J. 1967. Relationship among functional properties of California grassland. Nature 216: 168-169.
  24. Ministry of Environment (MOE). 2014. Standard methods for the examination water quality. Ministry of Environment, Korea.
  25. OECD. 1982. Eutrophication of waters, monitoring, assessment and control, p. 154. OECD, Paris.
  26. Olrik, K. 1981. Succession of phytoplankton in response to environmental factors in Lake Arreso, North Zealand, Denmark. Schweizerische Zeitschriftfur Hydrologie 43(1): 6-19.
  27. Park, J.G. and J.J. Lee. 2005. Community dynamics of phytoplankton in Lake Daecheong. Algae 20(3): 197-205. https://doi.org/10.4490/ALGAE.2005.20.3.197
  28. Phillips K.A. and M.W. Fawley. 2002. Winter phytoplankton community structure in three shallow temperate lakes during ice cover. Hydrobiologia 470(1): 97-113. https://doi.org/10.1023/A:1015667803372
  29. Pielou, E.C. 1966. The measurement of diversity in different types of biological collections. Journal of Theoretical Biology 13: 131-144. https://doi.org/10.1016/0022-5193(66)90013-0
  30. Preston, T., W.D.P. Stewart and C.S. Reynolds. 1980. Bloomforming cyanobacterium Microcystis aeruginosa overwinters on sediment surface. Nature 288: 365-367. https://doi.org/10.1038/288365a0
  31. Reynolds, C.S. 1984. The ecology of freshwater phytoplankton. Cambridge University Press, New York.
  32. Reynolds, C.S. 2006. The ecology of phytoplankton. Cambridge University Press, New York.
  33. Schalau, K., K. Rinke, D. Straile and F. Peeters. 2008. Temperature is the key factor explaining inter-annual variability of Daphnia development in spring: a modelling study. Oecologia 157(3): 531-543. https://doi.org/10.1007/s00442-008-1081-3
  34. Shannon, E. and W. Weaver. 1963. The mathematical theory of communication, p. 177. Illinoise Univ. Press, Urbana.
  35. Sommer, U. 1989. Nutrient status and nutrient competition of phytoplankton in a shallow, hypertrophic lake. Association for the Sciences of Limnology and Oceanography 34(7): 1162-1173. https://doi.org/10.4319/lo.1989.34.7.1162
  36. Sommer, U. and A. Lewandowska. 2011. Climate change and the phytoplankton spring bloom: warming and overwintering zooplankton have similar effects on phytoplankton. Global Change Biology 17(1): 154-162. https://doi.org/10.1111/j.1365-2486.2010.02182.x
  37. Son, H.J. 2013. The analysis of phytoplankton community structure in the middle-lower part of the Nakdong River. Korean Society of Environmental Engineers 35(6): 430-435. https://doi.org/10.4491/KSEE.2013.35.6.430
  38. Son, M., J.H. Park, C. Lim, S. Kim and B.J. Lim. 2013. Seasonal change of phytoplankton community and water quality in Yeongsan River watershed. Korean Journal of Environmental Biology 31(2): 105-112. https://doi.org/10.11626/KJEB.2013.31.2.105
  39. Tan, X., F. Kong, Y. Yu and M. Zhang. 2009. Spatio-temporal variations of phytoplankton community composition assayed by morphological observation and photosynthetic pigment analyses in Lake Taihu (China). African Journal of Biotechnology 8(19): 4977-4982.
  40. Tsujimura, S., H. Tsukada, H. Nakahara, T. Nakajima and M. Nishino. 2000. Seasonal variations of Microcystis populations in sediments of Lake Biwa, Japan. Hydrobiologia 434(1): 183-192. https://doi.org/10.1023/A:1004077225916
  41. Van Liere, L. and A.E. Walsby. 1982. Interactions of cyanobacteria with light. pp. 9-45. In: The biology of the cyanobacteria (Carr, N.G. and B.A. Whitton, eds.). Blackwell Science Publication, Oxford.
  42. Watanabe, M.F. and S. Oishi. 1985. Effects of environmental factors on toxicity of a cyanobacterium (Microcystis aeruginosa) under culture condition. Applied and Environmental Microbiology 49(5): 1342-1344.
  43. Yang, Y. 2015. Phytoplankton and physical disturbance: Seasonal dynamics in temperate Lake Erken, Sweden. Acta Universitatis Upsaliensis, Uppsala.