DOI QR코드

DOI QR Code

Effect of Copper on Marine Microalga Tetraselmis suecica and its Influence on Intra- and Extracellular Iron and Zinc Content

  • Kumar, K. Suresh (Department of Marine Sciences and Convergent Technology, Hanyang University) ;
  • Shin, Kyung-Hoon (Department of Marine Sciences and Convergent Technology, Hanyang University)
  • 투고 : 2016.10.17
  • 심사 : 2017.01.16
  • 발행 : 2017.03.31

초록

In an aquatic environment, toxicity of metals to organisms depends on external factors (type of metal, exposure concentration and duration, environmental parameters, and water quality) and intracellular processes(metal-binding sites and detoxification). Toxicity of copper(Cu) on the marine microalga Tetraselmis suecica was investigated in this study. Dose-dependent (Cu concentration dependent) inhibition of growth and cell division, as well as, variation of intra- and extra-cellular Cu, Fe and Zn content was observed. T. suecica was sensitive to Cu; the 96 h $EC_{50}$ (concentration to inhibit growth-rate by 50%) of growth rate (${\mu}$) ($21.73{\mu}M\;L^{-1}$), cell division $day^{-1}$ ($18.39{\mu}M\;L^{-1}$), and cells $mL^{-1}$ ($13.25{\mu}M\;L^{-1}$) demonstrate the toxicity of Cu on this microalga. High intra-($19.86Pg\;cell^{-1}$) and extra-cellular($54.73Pg\;cell^{-1}$) Cu concentrations were recorded, on exposure to 24.3 and $72.9{\mu}M\;L^{-1}$ of Cu.

키워드

참고문헌

  1. Abreu, F.C.P.D., P.N.M.D. Costa, A.M. Brondi, E.J. Pilau, F.C. Gozzo, M.N. Eberlin, M.G. Trevisan and J.S. Garcia. 2014. Effects of Cadmium and Copper Biosorption on Chlorella vulgaris. Bulletin of Environmental Contamination and Toxicology 93: 405-409. https://doi.org/10.1007/s00128-014-1363-x
  2. Adams, W.J., R. Blust, U. Borgmann, K.V. Brix, D.K. DeForest, A.S. Green, J.S. Meyer, J.C. McGeer, P.R. Paquin, P.S. Rainbow and C.M. Wood. 2011. Utility of tissue residues for predicting effects of metals on aquatic organisms. Integrated Environmental Assessment and Management 7(1): 75-98. https://doi.org/10.1002/ieam.108
  3. Aggarwal, A., I. Sharma, B.N. Tripathi, A.K. Munjal, M. Baunthiyal and V. Sharma. 2011. Metal Toxicity and Photosynthesis. In: Photosynthesis: Overviews on Recent Progress & Future Perspective, First 01/2011: chapter Metal toxicity and Photosynthesis. Ed. Itoh S, Mohanty P, Guruprasad KN, IK International Publishing House. New Delhi. pp. 16: 229-236. ISBN: ISBN978-93-81141-00-7.
  4. Al-Hejuje, M.M. 2008. Effect of some heavy metals ions on the chlorophyll a pigment of Nostoclinkia and Hapalosiphon aureus. Marsh Bulletin 3(2): 136-146.
  5. Arredondo, M., R. Martinez, M.T. Núnez, M. Ruz and M. Olivares. 2006. Inhibition of iron and copper uptake by iron, copper and zinc. Biological Research 39: 95-102.
  6. Azeez, P.A. and D.K. Banerjee. 1986. Effect of copper and cadmium assimilation and uptake of heavy metals. Bulletin of Environmental Contamination and Toxicology 12: 77-86.
  7. Blaby-Haas, C.E. and S.S. Merchant. 2012. The ins and outs of algal metal transport. Biochim Biophys Acta. 1823(9): 1531-1552. https://doi.org/10.1016/j.bbamcr.2012.04.010
  8. Campbell, P.G.C., O. Errecalde, C. Fortin, V.P. Hiriart-Baer and B. Vigneault. 2002. Metal bioavailability to phytoplankton: applicability of the biotic ligand model. Comparative Biochemistry and Physiology - Part C 133: 189-206.
  9. Carfagna, S., N. Lanza, G. Salbitani, A. Basile, S. Sorbo and V. Vona. 2013. Physiological and morphological responses of lead or cadmium exposed Chlorella sorokiniana 211-8K (Chlorophyceae). Springer Plus. 2,147.
  10. Cypaite, A., J. Zaltauskaite and J. Vencloviene. 2014. Assessment of chlorophyll-a, chlorophyll-b and growth rate in freshwater green algae Pseudokirchneriella subcapitata exposed to cadmium and copper. The 9th International Conference "ENVIRONMENTAL ENGINEERING" (Section: Environmental protection) 22-23 May 2014, Vilnius, Lithuania eISSN 2029-7092 / eISBN 978-609-457-640-9; pp. 1-7. Available from http://leidykla.vgtu.lt/conferences/ENVIRO_2014/Articles/1/009_Cypaite.pdf
  11. Fargasova, A. 2001. Interactive effect of manganese, molybdenum, nickel, copper I and II and vanadium on the freshwater alga Scenedesmusquadricauda. Bulletin of Environmental Contamination and Toxicology 67: 688-695.
  12. Fargasova, A., A. Bumbalova and E. Havranek. 1999. Ecotoxicological effects and uptake of metals ($Cu^+$, $Cu^{2+}$, $Mn^{2+}$, $Mn^{6+}$, $Mi^{2+}$, $V^{5+}$) in freshwater alga Scenedesmus quadricauda. Chemosphere 38: 1165-1173. https://doi.org/10.1016/S0045-6535(98)00346-4
  13. Franklin, N.M., J.L. Stauber, S.C. Apte and R.P. Lim. 2002a. Effect of initial cell density on the bioavailability and toxicity of copper in microalgal bioassays. Environmental Toxicology and Chemistry 21: 742-751. https://doi.org/10.1002/etc.5620210409
  14. Franklin, N.M., J.L. Stauber, R.L. Lim and P. Petocz. 2002b. Toxicity of metal mixtures to a tropical freshwater algae (Chlorella sp.): the effect of interactions between copper, cadmium, and zinc on metal cell binding and uptake. Environmental Toxicology and Chemistry 21: 2412-2422. https://doi.org/10.1002/etc.5620211121
  15. Franklin, N.M., J.L. Stauber, S.J. Markich and R.P. Lim. 2000. pH dependent toxicity of copper and uranium to a tropical freshwater alga (Chlorella sp.). Aquatic Toxicology 48: 275-289. https://doi.org/10.1016/S0166-445X(99)00042-9
  16. Gonzalez-Davila, M., J.M. Santana-Casiano, J. Perez-Pena and F.J. Millero. 1995. Binding of Cu(II) to the surface and exudates of the alga Dunaliella tertiolecta in seawater. Environmental Science & Technology 29(2): 289-301. https://doi.org/10.1021/es00002a004
  17. Hartnett, A., L.H. BOttger, B.F. Matzanke and C.J. Carrano. 2012. A multidisciplinary study of iron transport and storage in the marine green alga Tetraselmis suecica. Journal of Inorganic Biochemistry 116: 188-194. https://doi.org/10.1016/j.jinorgbio.2012.06.009
  18. Hossain, M.A., P. Piyatida, J.A. Teixeira da Silva and M. Fujita. 2012. Molecular Mechanism of Heavy Metal Toxicity and Tolerance in Plants: Central Role of Glutathione in Detoxification of Reactive Oxygen Species and Methylglyoxal and in Heavy Metal Chelation. Journal of Botany, vol. 2012, Article ID 872875, 37 pages, doi:10.1155/2012/872875.
  19. Johnson, H., M.S. Adams, J.L. Stauber and D.F. Jolley. 2007. Copper and zinc tolerance of two tropical microalgae after copper acclimation. Environmental Toxicology 22: 234-244. https://doi.org/10.1002/tox.20265
  20. Kanoun-Boule, M., J.A.F. Vicentea, C. Nabaisa, M.N.V. Prasad and F. Freitas. 2009. Ecophysiological tolerance of duckweeds exposed to copper. Aquatic Toxicology 91(1): 1-9. https://doi.org/10.1016/j.aquatox.2008.09.009
  21. Kaplan, D. 2013. Absorption and Adsorption of Heavy Metals by Microalgae, in Handbook of Microalgal Culture: Applied Phycology and Biotechnology, Second Edition (Richmond, A. and Q. Hu, eds.). John Wiley & Sons, Ltd, Oxford, UK. doi: 10.1002/9781118567166.ch32
  22. Kebeish, R., Y. El-Ayouty and A. Husain. 2014. Effect of copper on growth, bioactive metabolites, antioxidant enzymes and photosynthesis-related gene transcription in Chlorella vulgaris. World Journal of Biology and Biological Sciences 2(2): 34-43.
  23. Kim, M.-K. and R.E.H. Smith. 2001. Effect of ionic copper toxicity on the growth of green alga, Selenastrum capricornutum. Journal of Microbiology and Biotechnology 11: 211-216.
  24. Knauer, K., R. Behra and L. Sigg. 1997. Effects of free $Cu^{2+}$ and $Zn^{2+}$ ions on growth and metal accumulation in freshwater algae. Environmental Toxicology and Chemistry 16: 220-229. https://doi.org/10.1002/etc.5620160218
  25. Kumar, K.S., H.U. Dahms, E.J. Won, J.S. Lee and K.H. Shin. 2015. Microalgae-A promising tool for heavy metal remediation. Ecotoxicology and Environmental Safety 113: 329-352. https://doi.org/10.1016/j.ecoenv.2014.12.019
  26. Kumar, K.S., H.-U. Dahms, J.-S. Lee, H.C. Kim, W.C. Lee and K.-H. Shin. 2014. Algal photosynthetic responses to toxic metals and herbicides assessed by chlorophyll a fluorescence. Ecotoxicology and Environmental Safety 104: 51-71. https://doi.org/10.1016/j.ecoenv.2014.01.042
  27. Lee, H.J. and S.B. Hur. 2009. Genetic Relationships among Multiple Strains of the Genus Tetraselmis Based on Partial 18S rDNA Sequences. Algae 24(4): 205-212. https://doi.org/10.4490/ALGAE.2009.24.4.205
  28. Levy, J.L., B.M. Angel, J.L. Stauber, W.L. Poon, S.L. Simpson, S.H. Cheng and D.F. Jolley. 2008. Uptake and internalisation of copper by three marine microalgae: comparison of copper-sensitive and copper-tolerant species. Aquatic Toxicology 89: 82-93. https://doi.org/10.1016/j.aquatox.2008.06.003
  29. Levy, J.L., J.L. Stauber and D.F. Jolley. 2007. Sensitivity of marine microalgae to copper: the effect of biotic factors on copper adsorption and toxicity. Science of the Total Environment 387: 141-154. https://doi.org/10.1016/j.scitotenv.2007.07.016
  30. Li, Y.X., S. Zhou, F.J. Zhao, Y. Liu, P.P. Fan and G.C. Wang. 2010. Physiological responses of Porphyra haitanesis to different copper and zinc concentrations. Brazilian Journal of Oceanography 58(4): 261-267. https://doi.org/10.1590/S1679-87592010000400001
  31. Lim, C.Y., Y.H. Yoo, M. Sidharthan, C.W. Ma, I.C. Bang, J.M. Kim, K.S. Lee, N.S. Park and H.W. Shin. 2006. Effects of copper (I) oxide on growth and biochemical compositions of two marine microalgae. Journal of Environmental Biology 27: 461-466.
  32. Lupi, F.M., H.M.L. Fernandes and I.S. Correia. 1998. Increase of copper toxicity to growth of Chlorella vulgaris with increase of light intensity. Microbial Ecology 35: 193-198. https://doi.org/10.1007/s002489900074
  33. Ma, M., W. Zhu, Z. Wang and G.J. Witkamp. 2003. Accumulation, assimilation and growth inhibition of copper on freshwater alga (Scenedesmus subspicatus 86.81 SAG) in the presence of EDTA and fulvic acid. Aquatic Toxicology 63: 221-228. https://doi.org/10.1016/S0166-445X(02)00179-0
  34. Monteiro, C.M., P.M.L. Castro and F.X. Malcata. 2012. Metal uptake by microalgae: Underlying mechanisms and practical applications. Biotechnology Progress 28: 299-311. https://doi.org/10.1002/btpr.1504
  35. Monteiro, C.M., S.C. Fonseca, P.M.L. Castro and F.X. Malcata. 2011. Toxicity of cadmium and zinc on two microalgae, Scenedesmus obliquus and Desmodesmus pleiomorphus, from Northern Portugal. Journal of Applied Phycology 23: 97-103. https://doi.org/10.1007/s10811-010-9542-6
  36. Morel, F.M.M., J.G. Rueter and N.M. Price. 1991. Iron nutrition of phytoplankton and its possible importance in the ecology of ocean regions with high nutrient and low biomass. Oceanography 4: 56-61. https://doi.org/10.5670/oceanog.1991.03
  37. Nassiri, Y., T. Ginsburger-Vogel, J.L. Mansot and J. Wery. 1996. Effects of heavy metals on Tetraselmis suecica: Ultrastructural and energy-dispersive X-ray spectroscopic studies. Biology of the Cell 86: 51-160.
  38. Nassiri, Y., J.L. Mansot, J. Wery, T. Ginsburger-Vogel and J.C. Amiard. 1997. Ultrastructural and electron energy loss spectroscopy studies of sequestration mechanisms of Cd and Cu in the marine diatom Skeletonema costatum. Archives of Environmental Contamination and Toxicology 33: 147-155. https://doi.org/10.1007/s002449900236
  39. Ouyang, H.L., X.Z. Kong, W. He, N. Qin, Q.S. He, W. Yan, W. Rong and X.F. Liu. 2012. Effects of five heavy metals at sub-lethal concentrations on the growth and photosynthesis of Chlorella vulgaris. Chinese Science Bulletin 57: 3363-3370. https://doi.org/10.1007/s11434-012-5366-x
  40. Ozkoc, H.B. and Z.S. Taylan. 2010. Assessment of various parameters of metal biology in marine microalgae Phaeodactylum tricornutum and Dunaliella tertiolecta. Fresenius Environmental Bulletin 19(12a): 2981-2986.
  41. Perales-Vela, H.V., S. Gonzalez-Morenom, C. Montes-Horcasitas and R.S. CanizaresVillanueva. 2007. Growth, photosynthetic and respiratory responses to sub-lethal copper concentrations in Scenedesmus incrassatulus (Chlorophyceae). Chemosphere 67: 2274-2281. https://doi.org/10.1016/j.chemosphere.2006.11.036
  42. Pistocchi, R.F., G.V. Balboni and L. Boni. 1997. Copper toxicity and carbohydrate production in the microalgae Cylindrotheca fusiformis and Gymnodinium sp. European Journal of Phycology 32: 125-132. https://doi.org/10.1080/09670269710001737049
  43. Porra, R.J. 2002. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynthesis Research 73: 149-156. https://doi.org/10.1023/A:1020470224740
  44. Qian, H.F., J.J. Li, L.W. Sun, W. Chen, G.D. Sheng, W.P. Liu and Z.W. Fu. 2009. Combined effect of copper and cadmium on Chlorella vulgaris growth and photosynthesis- related gene transcription. Aquatic Toxicology 94: 56-61. https://doi.org/10.1016/j.aquatox.2009.05.014
  45. Rai, P.K. and L.C. Rai. 1997. Interactive effect of UV B and Cu on photosynthesis, uptake and metabolism of nutrients in a green alga Chlorella vulgaris under simulated ozone column. The Journal of General and Applied Microbiology 43: 281-288. https://doi.org/10.2323/jgam.43.281
  46. Regaldo, L., S. Gervasio, H. Troiani and A.M. danGagneten. 2013. Bioaccumulation and Toxicity of Copper and Lead in Chlorella vulgaris. Journal of Algal Biomass Utilization 2: 59-66.
  47. Rocchetta, I. and H. Kupper. 2009. Chromium- and copper-induced inhibition of hotosynthesis in Euglena gracilis analysed on the single-cell level by fluorescence kinetic microscopy. New Phytologist 182(2): 405-420. https://doi.org/10.1111/j.1469-8137.2009.02768.x
  48. Sanchez-Marin, P., C. Fortin and P.G.C. Campbell. 2014. Lead (Pb) and copper (Cu) share a common uptake transporter in the unicellular alga Chlamydomonas reinhardtii. Biometals 27: 173-181. https://doi.org/10.1007/s10534-013-9699-y
  49. Sbihi, K., O. Cherifi, A. El Gharmali, B. Oudra and F. Aziz. 2012. Accumulation and toxicological effects of cadmium, copper and zinc on the growth and photosynthesis of the freshwater diatom Planothidium lanceolatum (Brebisson) Lange-Bertalot: A laboratory study. Journal of Materials and Environmental Science 3(3): 497-506.
  50. Soldo, D., R. Hari, L. Sigg and R. Behra. 2005. Tolerance of Oocystisnephrocytioides to copper: intracellular distribution and extracellular complexation of copper. Aquatic Toxicology 71: 307-317. https://doi.org/10.1016/j.aquatox.2004.11.011
  51. Stauber, J.L. and T.M. Florence. 1987. The mechanism of toxicity of ionic copper and copper complexes to algae. Marine Biology 94: 511-519. https://doi.org/10.1007/BF00431397
  52. Sunda, W., D.J. Kleber, R.P. Klene and S. Huntsman. 2002. An antioxidant function for DMSP and DMS in marine algae. Nature 418: 317-320. https://doi.org/10.1038/nature00851
  53. Tovar-Sanchez, A., S.A. Sanudo-Wilhelmy, M. Garcia-Vargas, R.S. Weaver, L.C. Popels and D.A. Hutchins. 2003. A trace metal clean reagent to remove surface-bound iron from marine phytoplankton. Marine Chemistry 82(1-2): 91-99. https://doi.org/10.1016/S0304-4203(03)00054-9
  54. Tripathi, B.N. and J.P. Gaur. 2006. Physiological behavior of Scenedesmus sp. during exposure to elevated levels of Cu and Zn and after withdrawal of metal stress. Protoplasma 229: 1-9. https://doi.org/10.1007/s00709-006-0196-9
  55. Veerapandiyan, N., T. Lenin, P. Sampathkumar, A. Arokiasundaram and S.P.J. Sangeetha. 2014. Acute toxicity on growth and chlorophyll a’ content of diatom Odontellaaurita. International Journal of Science Inventions Today 3(6): 725-736.
  56. Volland, S., E. Bayer, V. Baumgartner, A. Andosch, C. Lutz, E. Sima and U. Lutz-Meindl. 2014. Rescue of heavy metal effects on cell physiology of the algal model system Micrasterias by divalent ions. Journal of Plant Physiology 171: 154-163. https://doi.org/10.1016/j.jplph.2013.10.002
  57. Walne, P.R. 1970. Studies on the food value of nineteen genera of algae to juvenile bivalves of the genera Ostrea, Crassostrea, Mercenaria, and Mytilis. Fish Inves 26: 1-62.
  58. Webster, R.E., A.P. Dean and J.K. Pittman. 2011. Cadmium exposure and phosphorus limitation increases metal content in the freshwater alga Chlamydomonas reinhardtii. Environmental Science & Technology 45: 7489-7496. https://doi.org/10.1021/es200814c
  59. Wei, Y., N. Zhu, M. Lavoie, J. Wang, H. Qian and Z. Fu. 2014. Copper toxicity to Phaeodactylum tricornutum: a survey of the sensitivity of various toxicity endpoints at the physiological, biochemical, molecular and structural levels. BioMetals 27(3): 527-537. https://doi.org/10.1007/s10534-014-9727-6
  60. Wilde, K.L., J.L. Stauber, S.J. Markich, N.M. Franklin and P.L. Brown. 2006. The effect of pH on the uptake and toxicity of copper and zinc in a tropical freshwater alga (Chlorella sp.). Archives of Environmental Contamination and Toxicology 51: 174-185. https://doi.org/10.1007/s00244-004-0256-0
  61. Yan, H. and G. Pan. 2002. Toxicity and bioaccumulation of copper in three green microalgal species. Chemosphere 49(5): 471-476. https://doi.org/10.1016/S0045-6535(02)00285-0
  62. Zhang, L., X. He, M. Chen, R. An, X. An and J. Li. 2014. Responses of nitrogen metabolism to copper stress in Luffa cylindrica roots. Journal of Soil Science and Plant Nutrition 14(3): 616-624.
  63. Zhou, G.-J., F.-Q. Peng, L.J. Zhang and G.G. Ying. 2012. Biosorption of zinc and copper from aqueous solutions by two freshwater green microalgae Chlorella pyrenoidosa and Scenedesmus obliquus. Environmental Science and Pollution Research 19(7): 2918-2929. https://doi.org/10.1007/s11356-012-0800-9