DOI QR코드

DOI QR Code

EIS를 이용한 콘크리트 내부 철근의 부식거동평가에 관한 실험적 연구

An Experimental Study of the Corrosion Behavior Evaluation of Rebar in Concrete by Using Electrochemical Impedance Spectroscopy (EIS) Method

  • 박장현 (한양대학교 대학원 건축시스템공학과) ;
  • 이한승 (한양대학교 ERICA 건축학부)
  • 투고 : 2016.09.23
  • 심사 : 2016.09.30
  • 발행 : 2017.01.01

초록

NaCl과 $LiNO_2$의 첨가량에 따른 콘크리트에 매립된 철근의 부식거동을 전기화학적 임피던스 분광법을 이용하여 고찰하였다. 부식가속 방법중 하나인 건습반복법을 이용하여 단기간 내에 부식현상을 촉진하였으며, 측정된 임피던스 값을 통해 등가회로를 제안할 수 있었다. NaCl $1.2kg/m^3$이 첨가된 콘크리트에 매립된 철근의 부동태 피막이 빠르게 파괴되는 것을 확인할 수 있었으며, 염화물 첨가량 대비 0.6M의 $LiNO_2$를 첨가한 경우 부식진행속도가 크게 저하하는 것을 확인할 수 있었다. 또한 염화물 첨가량 대비 1.2M의 $LiNO_2$를 첨가한 경우 부동태 피막이 부식가속시간이 지나도 파괴되지 않고 성능이 유지되는 것을 확인할 수 있었다.

The corrosion behavior of a rebar in concrete according to the amount of NaCl and $LiNO_2$ was observed by using Electrochemical Impedance Spectroscopy. The corrosion was accelerated in a short time by using dry/wet cycles method, which is one of the corrosion acceleration methods, and though the value of measured impedance, equivalent circuit can be introduced. It was confirmed that the passive film of a embedded rebar in concrete with NaCl was broken quickly, and when $0.6M\;LiNO_2$ was added, the velocity of ongoing corrosion was declined considerably compared to the amount of NaCl. However, when $1.2M\;LiNO_2$ was added, it was confirmed that the passive film was not broken and its performance remained, compared to the amount of NaCl.

키워드

참고문헌

  1. ASTM C876 (2015), Standard Test Method for Corrosion Potentials of Uncoated Reinforcing Steel in Concrete, Annual Book of American Society for Testing Materials Standards.
  2. Broomfield, J. P. (1997), Corrosion of Steel in Concrete: Understanding, Investigation and Repair, E&FN, London. ASCE., 115(11), 1521-1542.
  3. Dhouibi-Hachani, L. and Triki, E. (1996), Moon, Comparing the Steel-Concrete Interface State and Its Electrochemical Impedance, Cement and Concrete Research, 26(2), 253-266 https://doi.org/10.1016/0008-8846(95)00214-6
  4. Erhan, G., Mehmet, G., Fatih, K., and Kasim, M. (2013), Corrosion Behavior of Reinforcing Steel Embedded in Chloride Contaminated Concretes with and Without Metakaolin, Composites: Part B, 45, 1288-1295 https://doi.org/10.1016/j.compositesb.2012.09.085
  5. Everett, L. H. and Treadaway, K. W. J. (1980), Deterioration Due to Corrosion in Reinforced Concrete. BRE Information Paper IP 12/80, Building Research Establishment, Garston.
  6. Everett, L. H. and Treadaway, K. W. J. (1980), Deterioration Due to Corrosion in Reinforced Concrete. BRE Information Paper IP 12/80, Building Research Establishment, Garston.
  7. Glass, G. K. and Buenfeld, N. R. (1995), The Presentation of the Chloride Threshold Level for Corrosion of Steel in Concrete, Corrosion Science, 39(5), 1001-1013 https://doi.org/10.1016/S0010-938X(97)00009-7
  8. Kang, T. H., Cho, W. I., Cho, B. W., Ju, J. B., and Yun, K. S. (1998), Sutdies on the Concrete Reinforcement Corrosion by Electrochemical Impedance Spectro Scopy, Journal of Industrial and Engineering Chemistry, 9(6), 907-913.
  9. KS F 2599-2 (2013), Standard Test Method for the Accelerated Corrosion of Reinforced Concrete(wet-drying cycles method).
  10. Moon, H. Y., and Kim, S. S. (1998), Effect of Corrosion Inhibitor for Reinforcing Steelin Concrete Containing Chlorides, Journal of the Korea Concrete Institute, 10(6), 325-333.
  11. PAGE, C. L., and Treadaway, K. W. J. (1982), Aspects of the Electrochemistry of Steel in Concrete, Nature 297, 109-115. https://doi.org/10.1038/297109a0
  12. Sanchez, M., Gregori., J. Alonso, C., Garcia-Jareno, J. J., Takenouti, H., and Vicente, F. (2007), Electrochemical Impedance Spectroscopy for Studying Passive Layers on Steel Rebars Immersed in Alkaline Solutions Simulating Concrete Pores, Electrochimica Acta, 52(27), 7634-7641. https://doi.org/10.1016/j.electacta.2007.02.012
  13. Walter, G. W. (1986), A Review of Impedance Plot Methods Used for Corrosion Performance Analysis of Painted Metals, Corrosion Science, 26(9), 681-703. https://doi.org/10.1016/0010-938X(86)90033-8
  14. Wei, J., Fu, X. X., Dong, J. H., and Ke, W. (2011), Corrosion Evolution of Reinforcing Steel in Concrete under Dry/Wet Cyclic condition Contaminated with Chloride, Jounal of Materials Science & Technology, 28(10), 902-912.