DOI QR코드

DOI QR Code

균등 표면 염화물량을 고려한 시간 의존적 내구적 파괴확률 해석기법

Analysis Technique on Time-dependent PDF (Probability of Durability Failure) Considering Equivalent Surface Chloride Content

  • 이학수 (한남대학교 건설시스템공학과) ;
  • 권성준 (한남대학교 건설시스템공학과)
  • 투고 : 2016.10.19
  • 심사 : 2016.12.07
  • 발행 : 2017.03.01

초록

염해에 노출된 콘크리트 구조물의 내구수명 평가는 매우 중요하므로 최근들어 결정론적 및 확률론적 방법을 통하여 내구수명을 평가하는 시도가 이루어지고 있다. Fick's 2nd 법칙에 근거한 내구수명 평가방법은 표면 염화물량과 확산계수의 시간의존성을 고려하여 합리적인 설계를 수행하고 있으나, 확률론적 방법에서는 이러한 영향이 고려되지 않고 있다. 본 논문에서는 시간에 따라 증가하는 표면염화물량을 유효 표면염화물량으로 고려한 뒤 시간의존성 확산계수를 고려하여 내구적 파괴확률을 도출할 수 있는 해석기법을 제안하였다. 표면염화물에 도달하는 기간을 10~30년으로, 표면염화물량을 $5.0{\sim}10.0kg/m^3$으로 변화시키면서 내구적 파괴확률을 평가하고 내구수명의 변화를 분석하였다. 제안된 기법은 결정론적 내구수명 평가방법의 해석조건을 동일하게 적용시키면서 설계인자의 확률 변동성을 고려할 수 있으므로 과다한 설계를 방지함으로서 합리적인 설계기법으로 적용할 수 있다.

Recently durability design based on deterministic or probabilistic method has been attempted since service life evaluation in RC(Reinforced Concrete) structure exposed to chloride attack is important. The deterministic durability design contains a reasonable method with time effect on surface chloride content and diffusion coefficient, however the probabilistic design procedure has no consideration of time effect on both. In the paper, a technique on PDF(Probability of Durability Failure) evaluation is proposed considering time effect on diffusion and surface chloride content through equivalent surface chloride content which has same induced chloride content within a given period and cover depth. With varying period to built-up from 10 to 30 years and maximum surface chloride content from $5.0kg/m^3$ to $10.0kg/m^3$, the changing PDF and the related service life are derived. The proposed method can be reasonably applied to actual durability design with preventing conservative design parameters and considering the same analysis conditions of the deterministic method.

키워드

참고문헌

  1. Broomfield, J. P. (1997), Corrosion of Steel in Concrete: Understanding, Investigation and Repair, E&FN, London, 1-15.
  2. CEB (1997), New Approach to Durability Design, 29-43.
  3. DuraCrete Final Report (2000), DuraCrete Probabilistic Performance Based Durability Design of Concrete Structures.
  4. EN 1991 (2000), Eurocode 1 - Basis of Design and Actions on Structures.
  5. Ferreira, M., Arskog, V., Jalali, S., and Gjorv, O. E. (2004), Probability-Based Durability Analysis of Concrete Harbor Structures, Proceedings of CONSEC04, 999-1006.
  6. JSCE-Japan Society of Civil Engineering (2002), Concrete Library 109: Proposal of the format for durability database of concrete.
  7. JSCE-Japan Society of Civil Engineering (2007), Standard Specifications and Guidelines, Japan Society of Civil Engineers.
  8. KCI (2012), Concrete Standard Specification Durability Part, Korea Concrete Institute.
  9. Kwon, S. J., Na, U. J., Park, S. S., and Jung, S. H. (2009), Service Life Prediction of Concrete Wharves with Early-aged Crack: Probabilistic Approach for Chloride Diffusion, Structure and Safety, 31(1), 75-83. https://doi.org/10.1016/j.strusafe.2008.03.004
  10. Poulsen, E. (1993), On a Model of Chloride Ingress into Concrete, Nordic Miniseminar-Chloride Transport, Department of Building Materials, Gothenburg.
  11. RILEM. (1994), Durability Design of Concrete Structures, Report of RILEM Technical Committee 130-CSL, E&FN, London, 28-52.
  12. Song, H. W., Pack, S. W., and Ann, K. Y. (2009), Probabilistic Assessment to Predict the Time to Corrosion of Steel in Reinforced Concrete Tunnel Box Exposed to Sea Water, Construction and Building Materials, 23(10), 3270-3278. https://doi.org/10.1016/j.conbuildmat.2009.05.007
  13. Tang, L., and Joost, G. (2007), On the Mathematics of Time-Dependent Apparent Chloride Diffusion Coefficient in Concrete, Cement and Concrete Research, 37(4), 589-595. https://doi.org/10.1016/j.cemconres.2007.01.006
  14. Thomas, M. D. A., and Bentz, E. C. (2002), $Life-365^{TM}$ Service Life Prediction $Model^{TM}$ and Computer program for Predicting the Service Life and Life-cycle Costs of Reinforced Concrete Exposed to Chlorides, SFA, 2-28.