DOI QR코드

DOI QR Code

A Study on the Improvement of Storage Stability of Solder Paste Using Multiple size of solder Powder

다양한 크기의 솔더 파우더를 이용한 솔더 페이스트의 저장안정성 향상에 관한 연구

  • 임찬규 (부경대학교 인쇄공학과) ;
  • 권보석 (부경대학교 인쇄공학과) ;
  • 손민정 (한국기계연구원) ;
  • 김인영 (한국기계연구원) ;
  • 양상선 (한국기계연구원 부설 재료연구소 분말/세라믹 연구본부) ;
  • 남수용 (부경대학교 인쇄공학과)
  • Received : 2017.09.15
  • Accepted : 2017.10.12
  • Published : 2017.10.28

Abstract

Solder paste is widely used as a conductive adhesive in the electronics industry. In this paper, nano and microsized mixed lead-free solder powder (Sn-Ag-Cu) is used to manufacture solder paste. The purpose of this paper is to improve the storage stability using different types of solvents that are used in fabricating the solder paste. If a solvent of sole acetate is used, the nano sized solder powder and organic acid react and form a Sn-Ag-Cu malonate. These formed malonates create fatty acid soaps. The fatty acid soaps absorb the solvents and while the viscosity of the solder paste rises, the storage stability and reliability decrease. When ethylene glycol, a dihydric alcohol, is used the fatty acid soaps and ethylene glycol react, preventing the further creation of the fatty acid soaps. The prevention of gelation results in an improvement in the solder paste storage ability.

Keywords

References

  1. J. Osenbach, A. Amin, M. Bachman, F. Baiocchi, D. Bitting, D. Crouthamel, J. DeLucca, D. Gerlach, J. Goodell, C. Peridier, M. Stahley and R. Weachock: J. Electron. Mater., 38 (2009) 303. https://doi.org/10.1007/s11664-008-0599-9
  2. R. A. Islam, B. Y. Wu, M. O. Alam, Y. C. Cahn and W. Jilek: J. Alloys Compd., 392 (2005) 149. https://doi.org/10.1016/j.jallcom.2004.08.079
  3. R. Durairaj, S. Ramesh, S. Mallik, A. Seman and N. Ekere: Materals and Design, 30 (2009) 3812. https://doi.org/10.1016/j.matdes.2009.01.028
  4. K. N. Tu and K. Zeng: Mater. Sci. Eng. R, 34 (2001) 1. https://doi.org/10.1016/S0927-796X(01)00029-8
  5. I. E. Anderson: J. Mater. Sci. Mater. Electron., 18 (2006) 55. https://doi.org/10.1007/s10854-006-9011-9
  6. J. Shen and Y. C. Chan: Microelectron. Reliab., 49 (2009) 223. https://doi.org/10.1016/j.microrel.2008.10.004
  7. L. Ye, Z. Lai, J. Liu and A. Tholen: IEEE Trans. Compon, Packag. Manuf. Technol., 22 (1999) 299. https://doi.org/10.1109/6144.774749
  8. Macosko, Christopher W., Larson, Ronald G.: Rheology: Principles, Measurements, and Applications. Knovel(Ed.), VCH, New York (1994) 568.
  9. T. E. F. M. Standaert, M. Schaepkens, N. R. Rueger, P. G. M. Sebel, and G. S. Oehrleinc: J. Vac. Sci. Technol., 16 (1998) 239 https://doi.org/10.1116/1.580978
  10. P. R. Griffiths and J. A. De Haseth: Fourier Transform Infrared Spectrometry (2nd ed.), James D. Winefordner (Ed.), John Wiley & Sons, Hoboken (2007) 556.
  11. K. Masashi, T. Takahashi, A. Kano and T. Sato: ICEPIACC, 106 (2015) 314.
  12. S. M. L. Nai, J. V. M. Kuma, M. E. Alam, X. L. Zhong, P. Babaghorbani, M. Gupta: J. Mater Eng. Perform., 19 (2010) 335 https://doi.org/10.1007/s11665-009-9481-z
  13. L. Y. Hsiao and J. G. Duh: J. Electron. Mater., 35 (2006) 1755. https://doi.org/10.1007/s11664-006-0230-x
  14. A. S. M. A. Haseeb, M. M. Arafat and M. R. Johan: Mater. Charact., 64 (2012) 27. https://doi.org/10.1016/j.matchar.2011.11.006
  15. Z. Gu, H. Ye, D. Smirnova, D. Small and D. H. Gracias: Small, 2 (2006) 225. https://doi.org/10.1002/smll.200500296
  16. K. Mohankumar, and A. A. O. Tay, Electronics Packaging Technology Conference 2004, EPTC2004, proceedings of 6th, 455.
  17. M. J. Son, I. Y. Kim, S. S. Yang, T. M. Lee and H. J. Lee: Microelectron. Eng., 164 (2016) 128 https://doi.org/10.1016/j.mee.2016.07.012