DOI QR코드

DOI QR Code

Influence of milling atmosphere on thermoelectric properties of p-type Bi-Sb-Te based alloys by mechanical alloying

  • Yoon, Suk-min (Division of Advanced Materials Engineering, Kongju National University) ;
  • Nagarjuna, Cheenepalli (Division of Advanced Materials Engineering, Kongju National University) ;
  • Shin, Dong-won (Division of Advanced Materials Engineering, Kongju National University) ;
  • Lee, Chul-hee (Division of Advanced Materials Engineering, Kongju National University) ;
  • Madavali, Babu (Division of Advanced Materials Engineering, Kongju National University) ;
  • Hong, Soon-jik (Division of Advanced Materials Engineering, Kongju National University) ;
  • Lee, Kap-ho (Department of Materials Science & Engineering, Chungnam National University)
  • Received : 2017.10.16
  • Accepted : 2017.10.24
  • Published : 2017.10.28

Abstract

In this study, Bi-Sb-Te thermoelectric materials are produced by mechanical alloying (MA) and spark plasma sintering (SPS). To examine the influence of the milling atmosphere on the microstructure and thermo-electric (TE) properties, a p-type Bi-Sb-Te composite powder is mechanically alloyed in the presence of argon and air atmospheres. The oxygen content increases to 55% when the powder is milled in the air atmosphere, compared with argon. All grains are similar in size and uniformly, distributed in both atmospheric sintered samples. The Seebeck coefficient is higher, while the electrical conductivity is lower in the MA (Air) sample due to a low carrier concentration compared to the MA (Ar) sintered sample. The maximum figure of merit (ZT) is 0.91 and 0.82 at 350 K for the MA (Ar) and MA (Air) sintered samples, respectively. The slight enhancement in the ZT value is due to the decrease in the oxygen content during the MA (Ar) process. Moreover, the combination of mechanical alloying and SPS process shows a higher hardness and density values for the sintered samples.

Keywords

References

  1. C. Kim, D. H. Kim, Y. K. Lee, J. T. Kim, Y. S. Han and H. Kim: J. Alloys Compd., 584 (2014) 108. https://doi.org/10.1016/j.jallcom.2013.09.001
  2. P. Dharmaiah, H. S. Kim, C. H. Lee and S. J. Hong: J. Alloys Compd., 686 ( 2016) 1. https://doi.org/10.1016/j.jallcom.2016.05.340
  3. S. Miura, Y. Sato, K. Fukuda, K. Nishimura and K. Ikeda: Mater. Sci. Eng. A., 277 (2000) 244. https://doi.org/10.1016/S0921-5093(99)00539-0
  4. M. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. Ren, J. P. Fleurial and P. Gogna: Adv. Mater., 19 (2007) 1043. https://doi.org/10.1002/adma.200600527
  5. G. J. Snyder and E. S. Toberer: Nature., 7 (2008) 5.
  6. K. C. Park, P. Dharmaiah, H. Y. Kim and S. J. Hong: J. Alloys Compd., 692 (2017) 573. https://doi.org/10.1016/j.jallcom.2016.09.106
  7. L. E. Bell: Science, 321 (2008) 1457. https://doi.org/10.1126/science.1158899
  8. K. H. Lee, H. S. Kim, S. I. Kim, E. S. Lee, S. M. Lee, J. S. Rhyee, J. Y. Jung, I. H. Kim, Y. Wang and K. Koumot: J. Electron. Mat., 41 (2012) 1165. https://doi.org/10.1007/s11664-012-1913-0
  9. O. B. Sokolov, S. Ya. Kipidarov and N. I. uvankov: Crys. Growth, 236 (2000) 181.
  10. M. H. Ettenberg, S. J. R. Maddux, J. Taylor, W. A. Jesser and F. D. Rosi: J. Crys Growth, 179 (1997) 495. https://doi.org/10.1016/S0022-0248(97)00133-4
  11. V. S. Zemskov, A. D. Belaya, U. S. Beluy and G. N. Kozhemyakin: J. Crys. Growth., 212 (2000) 161. https://doi.org/10.1016/S0022-0248(99)00587-4
  12. Z. Wanga, A. Vemishettia, J. I. Ejembia, G. Weia, B. Zhagb, L.Wangb, Y. Zhangb, S. Guob, J. Luoc, C. Chepkod, Q. Daid, J. Tangd and G. L. haoa: Mater. Sci. Eng. B, 205 (2016) 36. https://doi.org/10.1016/j.mseb.2015.12.001
  13. B. Poudel, Q. Hao, Y. Ma, Y. C. Lan, A. Minnich, B. Yu, X. Yan, D. Z. Wang, A. Muto, D. Vashaee, X. Y. Chen, J. M. Liu, M. S. Dresselhaus, G. Chen, and Z. Ren: Science, 320 (2008) 634. https://doi.org/10.1126/science.1156446
  14. M. Scheele, N. Oeschler, K. Meier, A. Kornowski, C. Klinke, and H. Weller: Adv. Funct. Mater., 19 (2009) 3476. https://doi.org/10.1002/adfm.200901261
  15. B. Madavali, H. S. Kim, K. H. Lee, Y. Isoda, F. Gascoin, S. J. Hong: Materials & Design, 112 ( 2016) 485. https://doi.org/10.1016/j.matdes.2016.09.089
  16. K. C. Park, P. Dharmaiah, H. S. Kim and S. J. Hong: J. Alloys Compd., 692 (2017) 573. https://doi.org/10.1016/j.jallcom.2016.09.106
  17. J. Jiang, L. Chen, Q. Yao and Q. Wang: Materials transactions, 46 (2005).
  18. H. S. Kim and S. J. Hong: J. Alloys Compd., 586 (2014) 428. https://doi.org/10.1016/j.jallcom.2013.05.163
  19. K. T. Kim, T. S. Lim and G. H. Ha: Adv. Mater. Sci., 28 (2011) 196.
  20. S. Seo, Y. Jeong, M. W. Oh and B. Yoo: J. Alloys Compd., 706 (2017) 576. https://doi.org/10.1016/j.jallcom.2017.02.181
  21. D. H. Kim, C. Kim, S. H. Heo and H. Kim: Acta Mater., 59 (2011) 405. https://doi.org/10.1016/j.actamat.2010.09.054
  22. Z. L. Wang, T. Akao, Onda and Z. C. Chen: J. Alloys Compd., 663 (2016) 134. https://doi.org/10.1016/j.jallcom.2015.12.122