DOI QR코드

DOI QR Code

Elucidation of Bacterial Pneumonia-Causing Pathogens in Patients with Respiratory Viral Infection

  • Jung, Hwa Sik (Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine) ;
  • Kang, Byung Ju (Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine) ;
  • Ra, Seung Won (Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine) ;
  • Seo, Kwang Won (Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine) ;
  • Jegal, Yangjin (Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine) ;
  • Jun, Jae-Bum (Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine) ;
  • Jung, Jiwon (Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine) ;
  • Jeong, Joseph (Department of Laboratory Medicine, Ulsan University Hospital, University of Ulsan College of Medicine) ;
  • Jeon, Hee-Jeong (Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine) ;
  • Ahn, Jae-Sung (Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine) ;
  • Lee, Taehoon (Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine) ;
  • Ahn, Jong Joon (Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine)
  • Received : 2017.02.27
  • Accepted : 2017.06.29
  • Published : 2017.10.31

Abstract

Background: Bacterial pneumonia occurring after respiratory viral infection is common. However, the predominant bacterial species causing pneumonia secondary to respiratory viral infections other than influenza remain unknown. The purpose of this study was to know whether the pathogens causing post-viral bacterial pneumonia vary according to the type of respiratory virus. Methods: Study subjects were 5,298 patients, who underwent multiplex real-time polymerase chain reaction for simultaneous detection of respiratory viruses, among who visited the emergency department or outpatient clinic with respiratory symptoms at Ulsan University Hospital between April 2013 and March 2016. The patients' medical records were retrospectively reviewed. Results: A total of 251 clinically significant bacteria were identified in 233 patients with post-viral bacterial pneumonia. Mycoplasma pneumoniae was the most frequent bacterium in patients aged <16 years, regardless of the preceding virus type (p=0.630). In patients aged ${\geq}16years$, the isolated bacteria varied according to the preceding virus type. The major results were as follows (p<0.001): pneumonia in patients with influenza virus (type A/B), rhinovirus, and human metapneumovirus infections was caused by similar bacteria, and the findings indicated that Staphylococcus aureus pneumonia was very common in these patients. In contrast, coronavirus, parainfluenza virus, and respiratory syncytial virus infections were associated with pneumonia caused by gram-negative bacteria. Conclusion: The pathogens causing post-viral bacterial pneumonia vary according to the type of preceding respiratory virus. This information could help in selecting empirical antibiotics in patients with post-viral pneumonia.

Keywords

References

  1. Jain S, Self WH, Wunderink RG, Fakhran S, Balk R, Bramley AM, et al. Community-acquired pneumonia requiring hospitalization among U.S. adults. N Engl J Med 2015;373:415-27. https://doi.org/10.1056/NEJMoa1500245
  2. Jain S, Williams DJ, Arnold SR, Ampofo K, Bramley AM, Reed C, et al. Community-acquired pneumonia requiring hospitalization among U.S. children. N Engl J Med 2015;372:835-45. https://doi.org/10.1056/NEJMoa1405870
  3. Mandell LA, Wunderink RG, Anzueto A, Bartlett JG, Campbell GD, Dean NC, et al. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis 2007;44 Suppl 2:S27-72. https://doi.org/10.1086/511159
  4. American Thoracic Society; Infectious Diseases Society of America. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med 2005;171:388-416. https://doi.org/10.1164/rccm.200405-644ST
  5. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drugresistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012;18:268-81. https://doi.org/10.1111/j.1469-0691.2011.03570.x
  6. Klein EY, Monteforte B, Gupta A, Jiang W, May L, Hsieh YH, et al. The frequency of influenza and bacterial coinfection: a systematic review and meta-analysis. Influenza Other Respir Viruses 2016;10:394-403. https://doi.org/10.1111/irv.12398
  7. Chertow DS, Memoli MJ. Bacterial coinfection in influenza: a grand rounds review. JAMA 2013;309:275-82. https://doi.org/10.1001/jama.2012.194139
  8. Rice TW, Rubinson L, Uyeki TM, Vaughn FL, John BB, Miller RR 3rd, et al. Critical illness from 2009 pandemic influenza A virus and bacterial coinfection in the United States. Crit Care Med 2012;40:1487-98. https://doi.org/10.1097/CCM.0b013e3182416f23
  9. Kumar A, Roberts D, Wood KE, Light B, Parrillo JE, Sharma S, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 2006;34:1589-96. https://doi.org/10.1097/01.CCM.0000217961.75225.E9
  10. Rello J, Gallego M, Mariscal D, Sonora R, Valles J. The value of routine microbial investigation in ventilator-associated pneumonia. Am J Respir Crit Care Med 1997;156:196-200. https://doi.org/10.1164/ajrccm.156.1.9607030
  11. Watt JP, Moisi JC, Donaldson RL, Reid R, Ferro S, Whitney CG, et al. Measuring the incidence of adult community-acquired pneumonia in a Native American community. Epidemiol Infect 2010;138:1146-54. https://doi.org/10.1017/S0950268809991464
  12. Cherian T, Mulholland EK, Carlin JB, Ostensen H, Amin R, de Campo M, et al. Standardized interpretation of paediatric chest radiographs for the diagnosis of pneumonia in epidemiological studies. Bull World Health Organ 2005;83:353-9.
  13. Lehtinen P, Jartti T, Virkki R, Vuorinen T, Leinonen M, Peltola V, et al. Bacterial coinfections in children with viral wheezing. Eur J Clin Microbiol Infect Dis 2006;25:463-9. https://doi.org/10.1007/s10096-006-0166-3
  14. Khadadah M, Essa S, Higazi Z, Behbehani N, Al-Nakib W. Respiratory syncytial virus and human rhinoviruses are the major causes of severe lower respiratory tract infections in Kuwait. J Med Virol 2010;82:1462-7. https://doi.org/10.1002/jmv.21823
  15. Pitkaranta A, Roivainen M, Blomgren K, Peltola J, Kaijalainen T, Raty R, et al. Presence of viral and bacterial pathogens in the nasopharynx of otitis-prone children: a prospective study. Int J Pediatr Otorhinolaryngol 2006;70:647-54. https://doi.org/10.1016/j.ijporl.2005.08.018
  16. Lin PY, Lin TY, Huang YC, Tsao KC, Huang YL. Human metapneumovirus and community-acquired pneumonia in children. Chang Gung Med J 2005;28:683-8.
  17. Lieberman D, Shimoni A, Shemer-Avni Y, Keren-Naos A, Shtainberg R, Lieberman D. Respiratory viruses in adults with community-acquired pneumonia. Chest 2010;138:811-6. https://doi.org/10.1378/chest.09-2717
  18. Self WH, Williams DJ, Zhu Y, Ampofo K, Pavia AT, Chappell JD, et al. Respiratory viral detection in children and adults: comparing asymptomatic controls and patients with community-acquired pneumonia. J Infect Dis 2016;213:584-91. https://doi.org/10.1093/infdis/jiv323
  19. Hasvold J, Sjoding M, Pohl K, Cooke C, Hyzy RC. The role of human metapneumovirus in the critically ill adult patient. J Crit Care 2016;31:233-7. https://doi.org/10.1016/j.jcrc.2015.09.035

Cited by

  1. The Implication of Oxidative Stress and AMPK-Nrf2 Antioxidative Signaling in Pneumonia Pathogenesis vol.11, pp.None, 2017, https://doi.org/10.3389/fendo.2020.00400
  2. HL301 versus Umckamin in the treatment of acute bronchitis: a phase III, randomized, controlled, double-blind, multicenter study vol.36, pp.3, 2020, https://doi.org/10.1080/03007995.2019.1706044
  3. SARS-CoV-2-related pneumonia cases in pneumonia picture in Russia in March-May 2020: Secondary bacterial pneumonia and viral co-infections vol.10, pp.2, 2020, https://doi.org/10.7189/jogh.10.-020504
  4. Unusual case of necrotizing pneumonia caused by Fusobacterium nucleatum complicating influenza a virus infection vol.69, pp.None, 2017, https://doi.org/10.1016/j.anaerobe.2021.102342