DOI QR코드

DOI QR Code

Small Airway Disease in Patients with Chronic Obstructive Pulmonary Disease

  • Singh, Dave (University of Manchester, University Hospital of South Manchester)
  • Received : 2017.07.04
  • Accepted : 2017.07.07
  • Published : 2017.10.31

Abstract

Small airway disease (SAD) has been recognized for many years as a central feature of chronic obstructive pulmonary disease (COPD). Histopathology studies have shown that the narrowing and destruction of small airways in COPD combined with inflammatory cell infiltration in the submucosa increases the severity of the disease. SAD is present in the early stages of COPD and becomes more widespread over time as the disease progresses to more severe COPD. The development of inhalers containing extra-fine particles allows the small airways to be pharmacologically targeted. Recent clinical trials have shown the efficacy of extra-fine triple therapy that targets the small airways in patients with COPD. This article reviews the importance and treatment of SAD in COPD.

Keywords

References

  1. Vogelmeier CF, Criner GJ, Martinez FJ, Anzueto A, Barnes PJ, Bourbeau J, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report. GOLD executive summary. Am J Respir Crit Care Med 2017;195:557-82. https://doi.org/10.1164/rccm.201701-0218PP
  2. Adeloye D, Chua S, Lee C, Basquill C, Papana A, Theodoratou E, et al. Global and regional estimates of COPD prevalence: systematic review and meta-analysis. J Glob Health 2015;5:020415. https://doi.org/10.7189/jogh.05.020415
  3. Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 2006;3:e442. https://doi.org/10.1371/journal.pmed.0030442
  4. Lopez AD, Shibuya K, Rao C, Mathers CD, Hansell AL, Held LS, et al. Chronic obstructive pulmonary disease: current burden and future projections. Eur Respir J 2006;27:397-412. https://doi.org/10.1183/09031936.06.00025805
  5. Bafadhel M, McKenna S, Terry S, Mistry V, Reid C, Haldar P, et al. Acute exacerbations of chronic obstructive pulmonary disease: identification of biologic clusters and their biomarkers. Am J Respir Crit Care Med 2011;184:662-71. https://doi.org/10.1164/rccm.201104-0597OC
  6. Lange P, Celli B, Agusti A, Boje Jensen G, Divo M, Faner R, et al. Lung-function trajectories leading to chronic obstructive pulmonary disease. N Engl J Med 2015;373:111-22. https://doi.org/10.1056/NEJMoa1411532
  7. Vestbo J, Edwards LD, Scanlon PD, Yates JC, Agusti A, Bakke P, et al. Changes in forced expiratory volume in 1 second over time in COPD. N Engl J Med 2011;365:1184-92. https://doi.org/10.1056/NEJMoa1105482
  8. Singh D, Roche N, Halpin D, Agusti A, Wedzicha JA, Martinez FJ. Current controversies in the pharmacological treatment of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2016;194:541-9. https://doi.org/10.1164/rccm.201606-1179PP
  9. Hogg JC, Chu F, Utokaparch S, Woods R, Elliott WM, Buzatu L, et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med 2004;350:2645-53. https://doi.org/10.1056/NEJMoa032158
  10. McDonough JE, Yuan R, Suzuki M, Seyednejad N, Elliott WM, Sanchez PG, et al. Small-airway obstruction and emphysema in chronic obstructive pulmonary disease. N Engl J Med 2011;365:1567-75. https://doi.org/10.1056/NEJMoa1106955
  11. Hogg JC, Macklem PT, Thurlbeck WM. Site and nature of airway obstruction in chronic obstructive lung disease. N Engl J Med 1968;278:1355-60. https://doi.org/10.1056/NEJM196806202782501
  12. Hogg JC, McDonough JE, Suzuki M. Small airway obstruction in COPD: new insights based on micro-CT imaging and MRI imaging. Chest 2013;143:1436-43. https://doi.org/10.1378/chest.12-1766
  13. Macklem PT, Mead J. Resistance of central and peripheral airways measured by a retrograde catheter. J Appl Physiol 1967;22:395-401. https://doi.org/10.1152/jappl.1967.22.3.395
  14. Yanai M, Sekizawa K, Ohrui T, Sasaki H, Takishima T. Site of airway obstruction in pulmonary disease: direct measurement of intrabronchial pressure. J Appl Physiol (1985) 1992;72:1016-23. https://doi.org/10.1152/jappl.1992.72.3.1016
  15. Saetta M, Di Stefano A, Turato G, Facchini FM, Corbino L, Mapp CE, et al. CD8+ T-lymphocytes in peripheral airways of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1998;157(3 Pt 1):822-6. https://doi.org/10.1164/ajrccm.157.3.9709027
  16. Lams BE, Sousa AR, Rees PJ, Lee TH. Immunopathology of the small-airway submucosa in smokers with and without chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1998;158(5 Pt 1):1518-23. https://doi.org/10.1164/ajrccm.158.5.9802121
  17. Borrill ZL, Houghton CM, Woodcock AA, Vestbo J, Singh D. Measuring bronchodilation in COPD clinical trials. Br J Clin Pharmacol 2005;59:379-84. https://doi.org/10.1111/j.1365-2125.2004.02261.x
  18. Bickel S, Popler J, Lesnick B, Eid N. Impulse oscillometry: interpretation and practical applications. Chest 2014;146:841-7. https://doi.org/10.1378/chest.13-1875
  19. Aarli BB, Calverley PM, Jensen RL, Eagan TM, Bakke PS, Hardie JA. Variability of within-breath reactance in COPD patients and its association with dyspnoea. Eur Respir J 2015;45:625-34. https://doi.org/10.1183/09031936.00051214
  20. Crisafulli E, Pisi R, Aiello M, Vigna M, Tzani P, Torres A, et al. Prevalence of small-airway dysfunction among COPD patients with different GOLD stages and its role in the impact of disease. Respiration 2017;93:32-41. https://doi.org/10.1159/000452479
  21. Thomas M, Decramer M, O'Donnell DE. No room to breathe: the importance of lung hyperinflation in COPD. Prim Care Respir J 2013;22:101-11. https://doi.org/10.4104/pcrj.2013.00025
  22. Dellaca RL, Santus P, Aliverti A, Stevenson N, Centanni S, Macklem PT, et al. Detection of expiratory flow limitation in COPD using the forced oscillation technique. Eur Respir J 2004;23:232-40. https://doi.org/10.1183/09031936.04.00046804
  23. Dean J, Kolsum U, Hitchen P, Gupta V, Singh D. Clinical characteristics of COPD patients with tidal expiratory flow limitation. Int J Chron Obstruct Pulmon Dis 2017;12:1503-6. https://doi.org/10.2147/COPD.S137865
  24. Bhatt SP, Soler X, Wang X, Murray S, Anzueto AR, Beaty TH, et al. Association between functional small airway disease and FEV1 decline in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2016;194:178-84. https://doi.org/10.1164/rccm.201511-2219OC
  25. Subramanian DR, Gupta S, Burggraf D, Vom Silberberg SJ, Heimbeck I, Heiss-Neumann MS, et al. Emphysema- and airway-dominant COPD phenotypes defined by standardised quantitative computed tomography. Eur Respir J 2016;48:92-103. https://doi.org/10.1183/13993003.01878-2015
  26. Ostridge K, Williams N, Kim V, Bennett M, Harden S, Welch L, et al. Relationship between pulmonary matrix metalloproteinases and quantitative CT markers of small airways disease and emphysema in COPD. Thorax 2016;71:126-32. https://doi.org/10.1136/thoraxjnl-2015-207428
  27. Singh D. New combination bronchodilators for chronic obstructive pulmonary disease: current evidence and future perspectives. Br J Clin Pharmacol 2015;79:695-708. https://doi.org/10.1111/bcp.12545
  28. Singh D, Corradi M, Spinola M, Petruzzelli S, Papi A. Extrafine beclometasone diproprionate/formoterol fumarate: a review of its effects in chronic obstructive pulmonary disease. NPJ Prim Care Respir Med 2016;26:16030. https://doi.org/10.1038/npjpcrm.2016.30
  29. Singh D, Ferguson GT, Bolitschek J, Gronke L, Hallmann C, Bennett N, et al. Tiotropium + olodaterol shows clinically meaningful improvements in quality of life. Respir Med 2015;109:1312-9. https://doi.org/10.1016/j.rmed.2015.08.002
  30. Crisafulli E, Zanini A, Pisi G, Pignatti P, Poli G, Scuri M, et al. Inhaled beclometasone dipropionate/formoterol fumarate extrafine fixed combination for the treatment of asthma. Expert Rev Respir Med 2016;10:481-90. https://doi.org/10.1586/17476348.2016.1161508
  31. Wedzicha JA, Singh D, Vestbo J, Paggiaro PL, Jones PW, Bonnet-Gonod F, et al. Extrafine beclomethasone/formoterol in severe COPD patients with history of exacerbations. Respir Med 2014;108:1153-62. https://doi.org/10.1016/j.rmed.2014.05.013
  32. Dransfield MT, Bourbeau J, Jones PW, Hanania NA, Mahler DA, Vestbo J, et al. Once-daily inhaled fluticasone furoate and vilanterol versus vilanterol only for prevention of exacerbations of COPD: two replicate double-blind, parallel-group, randomised controlled trials. Lancet Respir Med 2013;1:210-23. https://doi.org/10.1016/S2213-2600(13)70040-7
  33. Crim C, Dransfield MT, Bourbeau J, Jones PW, Hanania NA, Mahler DA, et al. Pneumonia risk with inhaled fluticasone furoate and vilanterol compared with vilanterol alone in patients with COPD. Ann Am Thorac Soc 2015;12:27-34. https://doi.org/10.1513/AnnalsATS.201409-413OC
  34. Singh D, Nicolini G, Bindi E, Corradi M, Guastalla D, Kampschulte J, et al. Extrafine beclomethasone/formoterol compared to fluticasone/salmeterol combination therapy in COPD. BMC Pulm Med 2014;14:43. https://doi.org/10.1186/1471-2466-14-43
  35. De Backer J, Vos W, Vinchurkar S, Van Holsbeke C, Poli G, Claes R, et al. The effects of extrafine beclometasone/formoterol (BDP/F) on lung function, dyspnea, hyperinflation, and airway geometry in COPD patients: novel insight using functional respiratory imaging. J Aerosol Med Pulm Drug Deliv 2015;28:88-99. https://doi.org/10.1089/jamp.2013.1064
  36. Singh D, Papi A, Corradi M, Pavlisova I, Montagna I, Francisco C, et al. Single inhaler triple therapy versus inhaled corticosteroid plus long-acting beta2-agonist therapy for chronic obstructive pulmonary disease (TRILOGY): a double-blind, parallel group, randomised controlled trial. Lancet 2016;388:963-73. https://doi.org/10.1016/S0140-6736(16)31354-X
  37. Vestbo J, Papi A, Corradi M, Blazhko V, Montagna I, Francisco C, et al. Single inhaler extrafine triple therapy versus longacting muscarinic antagonist therapy for chronic obstructive pulmonary disease (TRINITY): a double-blind, parallel group, randomised controlled trial. Lancet 2017;389:1919-29. https://doi.org/10.1016/S0140-6736(17)30188-5
  38. Siddiqui SH, Guasconi A, Vestbo J, Jones P, Agusti A, Paggiaro P, et al. Blood eosinophils: a biomarker of response to extrafine beclomethasone/formoterol in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2015;192:523-5. https://doi.org/10.1164/rccm.201502-0235LE
  39. Pascoe S, Locantore N, Dransfield MT, Barnes NC, Pavord ID. Blood eosinophil counts, exacerbations, and response to the addition of inhaled fluticasone furoate to vilanterol in patients with chronic obstructive pulmonary disease: a secondary analysis of data from two parallel randomised controlled trials. Lancet Respir Med 2015;3:435-42. https://doi.org/10.1016/S2213-2600(15)00106-X
  40. Kolsum U, Damera G, Pham TH, Southworth T, Mason S, Karur P, et al. Pulmonary inflammation in patients with chronic obstructive pulmonary disease with higher blood eosinophil counts. J Allergy Clin Immunol 2017 May 12 [Epub]. https://doi.org/10.1016/j.jaci.2017.04.027.

Cited by

  1. Single inhaler triple therapy with extrafine beclomethasone, formoterol, and glycopyrronium for the treatment of chronic obstructive pulmonary disease vol.19, pp.11, 2017, https://doi.org/10.1080/14656566.2018.1498841
  2. Contribution of Host Defence Proteins and Peptides to Host-Microbiota Interactions in Chronic Inflammatory Lung Diseases vol.6, pp.3, 2017, https://doi.org/10.3390/vaccines6030049
  3. Dynamics of exhaled breath temperature after smoking a cigarette and its association with lung function changes predictive of COPD risk in smokers: a cross-sectional study vol.70, pp.2, 2019, https://doi.org/10.2478/aiht-2019-70-3211
  4. Chronic Obstructive Pulmonary Disease Is an Independent Predictor for 30-Day Complications and Readmissions Following 1- to 2-Level Anterior Cervical Discectomy and Fusion vol.9, pp.3, 2019, https://doi.org/10.1177/2192568218794170
  5. A Systematic Review of the Use of Physiological Tests Assessing the Acute Response to Treatment During Exacerbations of COPD (with a Focus on Small Airway Function) vol.17, pp.6, 2017, https://doi.org/10.1080/15412555.2020.1815183
  6. Quantitative CT Analysis of Small Airway Remodeling in Patients with Chronic Obstructive Pulmonary Disease by a New Image Post-Processing System vol.16, pp.None, 2017, https://doi.org/10.2147/copd.s295320
  7. Small Airways, Big Problem: Extrafine beclomethasone/formoterol in asthma and chronic obstructive pulmonary disease vol.38, pp.4, 2017, https://doi.org/10.4103/lungindia.lungindia_394_20
  8. Lung Deposition Using the Respimat® Soft Mist™ Inhaler Mono and Fixed-Dose Combination Therapies: An In Vitro/In Silico Analysis vol.18, pp.1, 2017, https://doi.org/10.1080/15412555.2020.1853091
  9. Why We Should Target Small Airways Disease in Our Management of Chronic Obstructive Pulmonary Disease vol.96, pp.9, 2017, https://doi.org/10.1016/j.mayocp.2021.03.016