DOI QR코드

DOI QR Code

Two-temperature thermoelastic surface waves in micropolar thermoelastic media via dual-phase-lag model

  • Abouelregal, A.E. (Department of Mathematics, Faculty of Science, Mansoura University) ;
  • Zenkour, A.M. (Department of Mathematics, Faculty of Science, King Abdulaziz University)
  • 투고 : 2017.02.21
  • 심사 : 2017.03.24
  • 발행 : 2017.11.25

초록

This article is concerned with a two-dimensional problem of micropolar generalized thermoelasticity for a half-space whose surface is traction-free and the conductive temperature at the surface of the half-space is known. Theory of two-temperature generalized thermoelasticity with phase lags using the normal mode analysis is used to solve the present problem. The formulas of conductive and mechanical temperatures, displacement, micro-rotation, stresses and couple stresses are obtained. The considered quantities are illustrated graphically and their behaviors are discussed with suitable comparisons. The present results are compared with those obtained according to one temperature theory. It is concluded that both conductive heat wave and thermodynamical heat wave should be separated. The two-temperature theory describes the behavior of particles of elastic body more real than one-temperature theory.

키워드

참고문헌

  1. Abbas, I.A. and Zenkour, A.M. (2014), "Two-temperature generalized thermoelastic interaction in an infinite fiber-reinforced anisotropic plate containing a circular cavity with two relaxation times", J. Comput. Theor. Nanosci., 11(1), 1-7. https://doi.org/10.1166/jctn.2014.3309
  2. Abouelregal, A.E. and Zenkour, A.M. (2016), "Generalized thermoelastic interactions due to an inclined load at a two-temperature half-space", J. Theor. Appl. Mech., 54(3), 827-838.
  3. Allam, M.N., Elsibai, K.A. and Abouelergal, A.E. (2002), "Thermal stresses in a harmonic field for an infinite body with a circular cylindrical hole without energy dissipation", J. Therm. Stress., 25(1), 57-68. https://doi.org/10.1080/014957302753305871
  4. Biot, M. (1952), "Thermoelasticity and irreversible thermodynamics", J. Appl. Phys., 27(3), 240-253. https://doi.org/10.1063/1.1722351
  5. Boschi, E. and Iesan, D. (1973), "A generalized theory of linear micropolar thermoelasticity", Mecc., 8(3), 154-157. https://doi.org/10.1007/BF02128724
  6. Carrera, E., Abouelregal, A.E., Abbas, I.A. and Zenkour, A.M. (2015), "Vibrational analysis for an axially moving microbeam with two temperatures", J. Therm. Stress., 38(6), 569-590. https://doi.org/10.1080/01495739.2015.1015837
  7. Chen, P.J. and Gurtin, M.E. (1968), "On a theory of heat conduction involving two temperatures", Z. Angew. Math. Phys., 19(4), 614-627. https://doi.org/10.1007/BF01594969
  8. Chen, P.J., Gurtin, M.E. and Williams, W.O. (1968), "A note on non-simple heat conduction", Z. Angew. Math. Phys., 19(6), 969-970. https://doi.org/10.1007/BF01602278
  9. Chen, P.J., Gurtin, M.E. and Williams, W.O. (1969), "On the thermodynamics of non-simple elastic materials with two temperatures", Z. Angew. Math. Phys., 20(1), 107-112. https://doi.org/10.1007/BF01591120
  10. El-Karamany, A.S. and Ezzat, M.A. (2004), "Analytical aspects in boundary integral equation formulation for the generalized linear micropolar thermoelasticity", J. Mech. Sci., 46(3), 389-409. https://doi.org/10.1016/j.ijmecsci.2004.03.013
  11. El-Karamany, A.S. and Ezzat, M.A. (2013), "On the three-phase-lag linear micropolar thermoelasticity theory", Eur. J. Mech. A/Sol., 40, 198-208. https://doi.org/10.1016/j.euromechsol.2013.01.011
  12. Eringen, A.C. (1970), Foundations of Micropolar Thermoelasticity, Course of Lectures No. 23, CSIM Udine Springer.
  13. Eringen, A.C. (1971), "Micropolar elastic solids with stretch", Ari. Kitabevi Matbassi, 24, 1-18.
  14. Eringen, A.C. (1984), "Plane waves in nonlocal micropolar elasticity", J. Eng. Sci., 22(8-10), 1113-1121. https://doi.org/10.1016/0020-7225(84)90112-5
  15. Green, A.E. and Lindsay, K.A. (1971), "Thermoelasticity", J. Elast., 2, 1-7.
  16. Green, A.E. and Naghdi, P.M. (1991), "A re-examination of the basic postulates of thermomechanics", Proceedings of the Royal Society of London, Series A, 432, 171-194. https://doi.org/10.1098/rspa.1991.0012
  17. Green, A.E. and Naghdi, P.M. (1992), "On undamped heat waves in an elastic solid", J. Therm. Stress., 15(2), 252-264.
  18. Green, A.E. and Naghdi, P.M. (1993), "Thermoelasticity without energy dissipation", J. Elast., 31(3), 189-209. https://doi.org/10.1007/BF00044969
  19. Gurtin, M.E. and Williams, W.O. (1966), "On the clausius-duhem inequality", Z. Angew. Math. Phys., 17(5), 626-633. https://doi.org/10.1007/BF01597243
  20. Kumar, R. and Singh, B. (1996), "Wave propagation in a micropolar generalized thermoelastic body with stretch", Proc. Ind. Acad. Sci. (Math. Sci.), 106, 183-199. https://doi.org/10.1007/BF02837172
  21. Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Sol., 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5
  22. Nath, S., Sengupta, P.R. and Debnath, L. (1998), "Magneto-thermoelastic surface waves in micropolar elastic media", Comput. Math. Appl., 35(3), 47-55. https://doi.org/10.1016/S0898-1221(97)00278-2
  23. Nowacki, M. (1966), Couple-Stresses in the Theory of Thermoelasticity, Proc. IUTAM Symposia, Vienna, Springer-Verlag, 259-278.
  24. Othman, M.I.A. and Singh, B. (2007), "The effect of rotation on generalized micropolar thermoelasticity for a half-space under five theories", J. Sol. Struct., 44(9), 2748-2762. https://doi.org/10.1016/j.ijsolstr.2006.08.016
  25. Quintanilla, R. (2004), "On existence, structural stability, convergence and spatial behavior in thermoelasticity with two temperatures", Acta Mech., 168(1), 61-73. https://doi.org/10.1007/s00707-004-0073-6
  26. Quintanilla, R. and Jordan, P.M. (2009), "A note on the two temperature theory with dual-phase-lag delay: Some exact solutions", Mech. Res. Commun., 36(7), 796-803. https://doi.org/10.1016/j.mechrescom.2009.05.002
  27. Scalia, A. (1990), "On some theorems in the theory of micropolar thermoelasticity", J. Eng. Sci., 28(3), 181-189. https://doi.org/10.1016/0020-7225(90)90122-Y
  28. Sherief, H.H., Hamza, F.A. and El-Sayed, A.M. (2005), "Theory of generalized micropolar thermoelasticity and an axisymmetric half-space problem", J. Therm. Stress., 28(4), 409-437. https://doi.org/10.1080/01495730590916641
  29. Tauchert, T.R., Claus, W.D. and Ariman, T. (1968), "The linear theory of micropolar thermoelasticity", J. Eng. Sci., 6(1), 37-47. https://doi.org/10.1016/0020-7225(68)90037-2
  30. Tzou, D.Y. (1995a), "A unified approach for heat conduction from macro-to micro-scales", J. Heat Transf., 117, 8-16. https://doi.org/10.1115/1.2822329
  31. Tzou, D.Y. (1995b), "Experimental support for the lagging behavior in heat propagation", J. Thermophys. Heat Transf., 9(4), 686-693. https://doi.org/10.2514/3.725
  32. Tzou, D.Y. (1996), "Macro-to-microscale heat transfer: The lagging behavior", Taylor & Francis, Washington, U.S.A.
  33. Youssef, H.M. (2006), "Theory of two-temperature-generalized thermoelasticity", IMA J. Appl. Math., 71(3), 383-390. https://doi.org/10.1093/imamat/hxh101
  34. Zenkour, A.M. and Abouelregal, A.E. (2014a), "State-space approach for an infinite medium with a spherical cavity based upon two-temperature generalized thermoelasticity theory and fractional heat conduction", Z. Angew. Math. Phys., 65(1), 149-164. https://doi.org/10.1007/s00033-013-0313-5
  35. Zenkour, A.M. and Abouelregal, A.E. (2014b), "The effect of two temperatures on a FG nanobeam induced by a sinusoidal pulse heating", Struct. Eng. Mech., 51(2), 199-214. https://doi.org/10.12989/sem.2014.51.2.199
  36. Zenkour, A.M. and Abouelregal, A.E. (2015), "The fractional effects of a two-temperature generalized thermoelastic semi-infinite solid induced by pulsed laser heating", Arch. Mech., 67(1), 53-73.

피인용 문헌

  1. The Fractional Strain Influence on a Solid Sphere under Hyperbolic Two-Temperature Generalized Thermoelasticity Theory by Using Diagonalization Method vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/6644133