DOI QR코드

DOI QR Code

Stochastic vibration response of a sandwich beam with nonlinear adjustable visco-elastomer core and supported mass

  • Ying, Z.G. (Department of Mechanics, School of Aeronautics and Astronautics, Zhejiang University) ;
  • Ni, Y.Q. (Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University) ;
  • Duan, Y.F. (Department of Civil Engineering, College of Civil Engineering and Architecture, Zhejiang University)
  • 투고 : 2016.10.28
  • 심사 : 2017.09.12
  • 발행 : 2017.10.25

초록

The stochastic vibration response of the sandwich beam with the nonlinear adjustable visco-elastomer core and supported mass under stochastic support motion excitations is studied. The nonlinear dynamic properties of the visco-elastomer core are considered. The nonlinear partial differential equations for the horizontal and vertical coupling motions of the sandwich beam are derived. An analytical solution method for the stochastic vibration response of the nonlinear sandwich beam is developed. The nonlinear partial differential equations are converted into the nonlinear ordinary differential equations representing the nonlinear stochastic multi-degree-of-freedom system by using the Galerkin method. The nonlinear stochastic system is converted further into the equivalent quasi-linear system by using the statistic linearization method. The frequency-response function, response spectral density and mean square response expressions of the nonlinear sandwich beam are obtained. Numerical results are given to illustrate new stochastic vibration response characteristics and response reduction capability of the sandwich beam with the nonlinear visco-elastomer core and supported mass under stochastic support motion excitations. The influences of geometric and physical parameters on the stochastic response of the nonlinear sandwich beam are discussed, and the numerical results of the nonlinear sandwich beam are compared with those of the sandwich beam with linear visco-elastomer core.

키워드

과제정보

연구 과제 주관 기관 : National Natural Science Foundation of China, Zhejiang Provincial Natural Science Foundation of China

참고문헌

  1. Baber, T.T., Maddox, R.A. and Orozco, C.E. (1998), "A finite element model for harmonically excited viscoelastic sandwich beams", Comput. Struct., 66, 105-113. https://doi.org/10.1016/S0045-7949(97)00046-1
  2. Bellan, C. and Bossis, G. (2002), "Field dependence of viscoelastic properties of MR elastomers", Int. J. Modern Phys. B, 16, 2447-2453. https://doi.org/10.1142/S0217979202012499
  3. Bose, H. (2007), "Viscoelastic properties of silicone-based magnetorheological elastomers", Int. J. Modern Phys. B, 21, 4790-4797. https://doi.org/10.1142/S0217979207045670
  4. Casciati, F., Rodellar, J. and Yildirim, U. (2012), "Active and semi-active control of structures -theory and application: a review of recent advances", J. Intell. Mater. Syst. Struct., 23, 1181-1195. https://doi.org/10.1177/1045389X12445029
  5. Caughey, T.K. (1971), "Nonlinear theory of random vibrations", Adv. Appl. Mech., 11, 209-253.
  6. Choi, W.J., Xiong, Y.P. and Shenoi, R.A. (2010), "Vibration characteristics of sandwich beam with steel skins and magnetorheological elastomer cores", Adv. Struct. Eng., 13, 837-847. https://doi.org/10.1260/1369-4332.13.5.837
  7. Daya, E.M., Azrar, L. and Potier-Ferry, M. (2004), "An amplitude equation for the non-linear vibration of viscoelastically damped sandwich beams", J. Sound Vib., 271, 789-813. https://doi.org/10.1016/S0022-460X(03)00754-5
  8. Demchuk, S.A. and Kuz'min, V.A. (2002), "Viscoelastic properties of magnetorheological elastomers in the regime of dynamic deformation", J. Eng. Phys. Thermophy., 75, 396-400. https://doi.org/10.1023/A:1015697723112
  9. Ditaranto, R.A. (1965), "Theory of the vibratory bending for elastic and viscoelastic layered finite-length beams", ASME J. Appl. Mech., 32, 881-886. https://doi.org/10.1115/1.3627330
  10. Dwivedy, S.K., Mahendra, N. and Sahu, K.C. (2009), "Parametric instability regions of a soft and magnetorheological elastomer cored sandwich beam", J. Sound Vib., 325, 686-704. https://doi.org/10.1016/j.jsv.2009.03.039
  11. Dyke, S.J., Spencer, B.F., Sain, M.K. and Carlson, J.D. (1996), "Modeling and control of magnetorheological dampers for seismic response reduction", Smart Mater. Struct., 5, 565-575. https://doi.org/10.1088/0964-1726/5/5/006
  12. Elishakoff, I. and Falsone, G. (1993), "Some recent developments in stochastic linearization technique", Computational Stochastic Mechanics, Elsevier Applied Science, London.
  13. Frostig, Y. and Baruch, M. (1994), "Free vibrations of sandwich beams with a transversely flexible core: a high order approach", J. Sound Vib., 176, 195-208. https://doi.org/10.1006/jsvi.1994.1368
  14. Hernandez, A., Marichal, G.N., Poncela, A.V. and Padron, I. (2015), "Design of intelligent control strategies using a magnetorheological damper for span structure", Smart Struct. Syst., 15, 931-947. https://doi.org/10.12989/sss.2015.15.4.931
  15. Hoang, N., Zhang, N. and Du, H. (2011), "An adaptive tunable vibration absorber using a new magnetorheological elastomer for vehicular powertrain transient vibration reduction", Smart Mater. Struct., 20, 015019. https://doi.org/10.1088/0964-1726/20/1/015019
  16. Hu, G.L., Guo, M., Li, W.H., Du, H.P. and Alici, G. (2011), "Experimental investigation of the vibration characteristics of a magnetorheological elasmoter sandwich beam under nonhomogeneous small magnetic fields", Smart Mater. Struct., 20, 127001. https://doi.org/10.1088/0964-1726/20/12/127001
  17. Hu, W. and Wereley, N.M. (2008), "Hybrid magnetorheological fluid-elastomeric lag dampers for helicopter stability augmentation", Smart Mater. Struct., 17, 045021. https://doi.org/10.1088/0964-1726/17/4/045021
  18. Jacques, N., Daya, E.M. and Potier-Ferry, M. (2010), "Nonlinear vibration of viscoelastic sandwich beams by the harmonic balance and finite element methods", J. Sound Vib., 329, 4251-4265. https://doi.org/10.1016/j.jsv.2010.04.021
  19. Jung, H.J., Eem, S.H., Jang, D.D. and Koo, J.H. (2011), "Seismic performance analysis of a smart base-isolation system considering dynamics of MR elastomers", J. Intell. Mater. Syst. Struct., 22, 1439-1450. https://doi.org/10.1177/1045389X11414224
  20. Kaleta, J., Krolewicz, M. and Lewandowski, D. (2011), "Magnetomechanical properties of anisotropic and isotropic magnetorheological composites with thermoplastic elastomer matrices", Smart Mater. Struct., 20, 085006. https://doi.org/10.1088/0964-1726/20/8/085006
  21. Koo, J.H., Khan, F., Jang, D.D. and Jung, H.J. (2010), "Dynamic characterization and modeling of magneto-rheological elastomers under compressive loadings", Smart Mater. Struct., 19, 117002. https://doi.org/10.1088/0964-1726/19/11/117002
  22. Kovac, E.J., Anderson, W.J. and Scott, R.A. (1971), "Forced nonlinear vibrations of a damped sandwich beam", J. Sound Vib., 17, 25-39. https://doi.org/10.1016/0022-460X(71)90131-3
  23. Lee, H.H. (1998), "Non-linear vibration of a multilayer sandwich beam with viscoelastic layers", J. Sound Vib., 216, 601-621. https://doi.org/10.1006/jsvi.1998.1716
  24. Li, Z. and Crocker, M.J. (2005), "A review on vibration damping in sandwich composite structures", Int. J. Acoust. Vib., 10, 159-169.
  25. Mahmoudkhani, S. and Haddadpour, H. (2013), "Nonlinear vibration of viscoelastic sandwich plates under narrow-band random excitations", Nonlin. Dyn., 74, 165-188. https://doi.org/10.1007/s11071-013-0956-y
  26. Mahmoudkhani, S., Haddadpour, H. and Navazi, H.M. (2014), "The effects of nonlinearities on the vibration of viscoelastic sandwich plates", Int. J. Nonlin. Mech., 62, 41-57. https://doi.org/10.1016/j.ijnonlinmec.2014.01.002
  27. Mead, D.J. and Markus, S. (1969), "The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions", J. Sound Vib., 10, 163-175. https://doi.org/10.1016/0022-460X(69)90193-X
  28. Nayak, B., Dwivedy, S.K. and Murthy, K.S.R.K. (2011), "Dynamic analysis of magnetorheological elastomer-based sandwich beam with conductive skins under various boundary conditions", J. Sound Vib., 330, 1837-1859. https://doi.org/10.1016/j.jsv.2010.10.041
  29. Ni, Y.Q., Ying, Z.G. and Chen, Z.H. (2011), "Micro-vibration suppression of equipment supported on a floor incorporating magneto-rheological elastomer core", J. Sound Vib., 330, 4369-4383. https://doi.org/10.1016/j.jsv.2011.04.020
  30. Rajagopal, S.V., Singh, G., Rao, Y.V.K.S. and Narayanan, S. (1986), "Non-linear vibrations of sandwich plates", J. Sound Vib., 110, 261-269. https://doi.org/10.1016/S0022-460X(86)80209-7
  31. Rajamohan, V., Rakheja, S. and Sedaghati, R. (2010), "Vibration analysis of a partially treated multi-layer beam with magnetorheological fluid", J. Sound Vib., 329, 3451-3469. https://doi.org/10.1016/j.jsv.2010.03.010
  32. Rao, D.K. (1977), "Forced vibration of a damped sandwich beam subjected to moving forces", J. Sound Vib., 54, 215-227. https://doi.org/10.1016/0022-460X(77)90024-4
  33. Rao, Y.V.K.S. and Nakra, B.C. (1974), "Vibrations of unsymmetrical sandwich beams and plates with viscoelastic cores", J. Sound Vib., 34, 309-326. https://doi.org/10.1016/S0022-460X(74)80315-9
  34. Roberts, J.B. and Spanos, P.D. (1990), Random Vibration and Statistical Linearization, John Wiley & Sons, Chichester.
  35. Shen, Y., Golnaraghi, M.F. and Heppler, G.R. (2004), "Experimental research and modeling of magnetorheological elastomers", J. Intell. Mater. Syst. Struct., 15, 27-35. https://doi.org/10.1177/1045389X04039264
  36. Socha, L. and Soong, T.T. (1991), "Linearization in analysis of nonlinear stochastic systems", Appl. Mech. Rev., 44, 399-422. https://doi.org/10.1115/1.3119486
  37. Spencer, B.F. and Nagarajaiah, S. (2003), "State of the art of structural control", ASCE J. Struct. Eng., 129, 845-856. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:7(845)
  38. Timoshenko, S.P., Young, D.H. and Weaver, W. (1974), Vibration Problems in Engineering, John Wiley & Sons, New York.
  39. Vaicaitis, R., Liu, S. and Jotautiene, E. (2008), "Nonlinear random vibrations of a sandwich beam adaptive to electrorheological materials", Mechanika, 71, 38-44.
  40. Xi, D.C., Chen, Q.H. and Cai, G.Q. (1986), "Control effects of damped sandwich beam on random vibration", J. Vib. Acoust. Stress Reliab. Des., 108, 65-68. https://doi.org/10.1115/1.3269305
  41. Xia, Z.Q. and Lukasiewicz, S. (1994), "Non-linear, free, damped vibrations of sandwich plates", J. Sound Vib., 175, 219-232. https://doi.org/10.1006/jsvi.1994.1324
  42. Yan, M.J. and Dowell, E.H. (1972), "Governing equations for vibrating constrained-layer damping sandwich plates and beams", ASME J. Appl. Mech., 94, 1041-1046.
  43. Ying, Z.G. and Ni, Y.Q. (2016), "A response-adjustable sandwich beam with harmonic distribution parameters under stochastic excitations", Int. J. Struct. Stab. Dyn., 17, 1750075.
  44. Ying, Z.G., Ni, Y.Q. and Duan, Y.F. (2015a), "Stochastic microvibration response characteristics of a sandwich plate with MR visco-elastomer core and mass", Smart Struct. Syst., 16, 141-162. https://doi.org/10.12989/sss.2015.16.1.141
  45. Ying, Z.G., Ni, Y.Q. and Huan, R.H. (2015b), "Stochastic microvibration response analysis of a magnetorheological viscoelastomer based sandwich beam under localized magnetic fields", Appl. Math. Model., 39, 5559-5566. https://doi.org/10.1016/j.apm.2015.01.028
  46. Ying, Z.G., Ni, Y.Q. and Sajjadi, M. (2013), "Nonlinear dynamic characteristics of magneto-rheological visco-elastomers", Sci. Chin. Technol. Sci., 56, 878-883.
  47. York, D., Wang, X. and Gordaninejad, F. (2007), "A new MR fluid-elastomer vibration isolator", J. Intell. Mater. Syst. Struct., 18, 1221-1225. https://doi.org/10.1177/1045389X07083622
  48. Yu, Y.Y. (1962), "Damping of flexural vibrations of sandwich plates", J. Aerosp. Sci., 29, 790-803. https://doi.org/10.2514/8.9607
  49. Zhou, G.Y. and Wang, Q. (2005), "Magnetorheological elastomerbased smart sandwich beams with nonconduction skins", Smart Mater. Struct., 14, 1001-1009. https://doi.org/10.1088/0964-1726/14/5/038
  50. Zhou, G.Y. and Wang, Q. (2006), "Study on the adjustable rigidity of magnetorheological-elastomer-based sandwich beams", Smart Mater. Struct., 15, 59-74. https://doi.org/10.1088/0964-1726/15/1/035