DOI QR코드

DOI QR Code

Investigation of an Infrared Temperature Measurement System for Thermal Safety Verification of Plasma Skin Treatment Devices

  • Choi, Jong-ryul (Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF)) ;
  • Kim, Wookeun (Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF)) ;
  • Kang, Bongkeun (Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF)) ;
  • Song, Tae-Ha (Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF)) ;
  • Baek, Hee Gyu (Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF)) ;
  • Han, Yeong Gil (R&D Team, Innovac Technology, Inc.) ;
  • Park, Jungmoon (R&D Team, Innovac Technology, Inc.) ;
  • Seo, Soowon (Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF))
  • Received : 2017.03.23
  • Accepted : 2017.09.12
  • Published : 2017.10.25

Abstract

In this paper, we developed a temperature measurement system based on an infrared temperature imaging module for thermal safety verification of a plasma skin treatment device (PSTD). We tested a pilot product of the low-temperature PSTD using the system, and the temperature increase of each plasma torch was well-monitored in real-time. Additionally, through the approximation of the temperature increase of the plasma torches, a certain limitation of the plasma treatment time on skin was established with the International Electrotechnical Commission (IEC) guideline. We determined an appropriate plasma treatment time ($T_{Safe}$ < 24 minutes) using the configured temperature measurement system. We believe that the temperature measurement system has a potential to be employed for testing thermal safety and suitability of various medical devices and industrial instruments.

Keywords

References

  1. P. A. Sturrock, Plasma physics: an introduction to the theory of astrophysical, geophysical and laboratory plasmas (Cambridge University Press, Cambridge, UK, 1994).
  2. Q. Z. Luo, N. D'angelo, and R. L. Merlino, "Shock formation in a negative ion plasma," Phys. Plasmas 5, 2868-2870 (1998). https://doi.org/10.1063/1.873007
  3. F. F. Chen, "Plasma ionization by helicon waves," Plasma Phys. Contr. F. 33, 339 (1991). https://doi.org/10.1088/0741-3335/33/4/006
  4. A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. Hicks, "The atmospheric-pressure plasma jet: a review and comparison to other plasma sources," IEEE T. Plasma Sci. 26, 1685-1694 (1998). https://doi.org/10.1109/27.747887
  5. L. Martinu and D. Poitras, "Plasma deposition of optical films and coatings: a review," J. Vac. Sci. Technol. A 18, 2619-2645 (2000). https://doi.org/10.1116/1.1314395
  6. H. H. Kim, "Nonthermal plasma processing for air-pollution control: a historical review, current issues, and future prospects," Plasma Process. Polym. 1, 91-110 (2004). https://doi.org/10.1002/ppap.200400028
  7. E. Gomez, D. A. Rani, C. R. Cheeseman, D, Deegan, M. Wise, and A. R. Boccaccini, "Thermal plasma technology for the treatment of wastes: a critical review," J. Hazard. Mater. 161, 614-626 (2009). https://doi.org/10.1016/j.jhazmat.2008.04.017
  8. S. Gopi, A. Sarma, A. Patel, and G. Ravi, "Non-thermal plasma at atmospheric pressure: system design and development," Instrument. Sci. Technol. 41, 651-665 (2013). https://doi.org/10.1080/10739149.2013.821657
  9. B. Jiang, J. Zheng, S. Qiu, M. Wu, Q. Zhang, Z. Yan, and Q. Xue, "Review on electrical discharge plasma technology for wastewater remediation," Chem. Eng. J. 236, 348-368 (2014). https://doi.org/10.1016/j.cej.2013.09.090
  10. J. F. Waymouth and F. Bitter, "Analysis of the plasma of fluorescent lamps," J. Appl. Phys. 27, 122-131 (1956). https://doi.org/10.1063/1.1722320
  11. F. Reymond, J. S. Rossier and H. H. Girault, "Polymer microchips bonded by O2-plasma activation," Electrophor. 23, 782-790 (2002). https://doi.org/10.1002/1522-2683(200203)23:5<782::AID-ELPS782>3.0.CO;2-K
  12. K. Haubert, T. Drier and D. Beebe, "PDMS bonding by means of a portable, low-cost corona system," Lab Chip 6, 1548-1549 (2006). https://doi.org/10.1039/b610567j
  13. N. Ferrell, R. R. Desai, A. J. Fleischman, S. Roy, H. D. Humes, and W. H. Fissell, "A microfluidic bioreactor with integrated transepithelial electrical resistance (TEER) measurement electrodes for evaluation of renal epithelial cells," Biotechnol. Bioeng. 107, 707-716 (2010). https://doi.org/10.1002/bit.22835
  14. M. Kamruzzaman, A.-M. Alam, K. M. Kim, S. H. Lee, Y. H. Kim, G.-M. Kim, and T. D. Dang, "Microfluidic chip based chemiluminescence detection of L-phenylalanine in pharmaceutical and soft drinks," Food Chem. 135, 57-62 (2012). https://doi.org/10.1016/j.foodchem.2012.04.062
  15. H. N. Chan, Y. Chen, Y. Shu, Y. Chen, Q. Tian, and H. Wu, "Direct, one-step molding of 3D-printed structures for convenient fabrication of truly 3D PDMS microfluidic chips," Microfluid. Nanofluid. 19, 9-18 (2015). https://doi.org/10.1007/s10404-014-1542-4
  16. T. Shimizu, B. Steffes, R. Pompl, F. Jamitzky, W. Bunk, K. Ramrath, M. Georgi, W. Stolz, H.-U. Schmidt, T. Urayama, S. Fujii, and G. E. Morfill, "Characterization of microwave plasma torch for decontamination," Plasma Process. Polym. 5, 577-582 (2008). https://doi.org/10.1002/ppap.200800021
  17. A. Popelka, I. Novak, M. Lehocky, I. Chodak, J. Sedliacik, M. Gajtanska, M. Sedliacikova, A. Vesel, I. Junkar, A. Kleinova, M. Spirkova, and F. Bilek, "Anti-bacterial treatment of polyethylene by cold plasma for medical purposes," Molecules 17, 762-785 (2012). https://doi.org/10.3390/molecules17010762
  18. J. Schlegel, J. Koritzer, and V. Boxhammer, "Plasma in cancer treatment," Clin. Plasma Med. 1, 2-7 (2013). https://doi.org/10.1016/j.cpme.2013.08.001
  19. G. Isbary, T. Shimizu, Y. F. Li, W. Stolz, H. M. Thomas, G. E. Morfill, and J. L. Zimmermann, "Cold atmospheric plasma devices for medical issues," Expert Rev. Med. Devices 10, 367-377 (2013). https://doi.org/10.1586/erd.13.4
  20. T. Von Woedtke, H. R. Metelmann, and K. D. Weltmann, "Clinical plasma medicine: state and perspectives of in vivo application of cold atmospheric plasma," Contrib. Plasm. Phys. 54, 104-117 (2014). https://doi.org/10.1002/ctpp.201310068
  21. X. Zhu, K. S. Chian, M. B. E. Chan-Park, and S. T. Lee, "Effect of argon-plasma treatment on proliferation of humanskin-derived fibroblast on chitosan membrane in vitro," J. Biomed. Mater. Res. A 73, 264-274 (2005).
  22. O. Lademann, H. Richter, M. C. Meinke, A. Patzelt, A. Kramer, P. Hinz, K.-D. Weltmann, B. Hartmann, and S. Koch, "Drug delivery through the skin barrier enhanced by treatment with tissue-tolerable plasma," Exp. Dermatol. 20, 488-490 (2011). https://doi.org/10.1111/j.1600-0625.2010.01245.x
  23. S. Rupf, A. Lehmann, M. Hanning, B. Schafer, A. Schubert, U. Feldmann, and A. Schindler, "Killing of adherent oral microbes by a non-thermal atmospheric plasma jet," J. Med. Microbiol. 59, 206-212 (2010). https://doi.org/10.1099/jmm.0.013714-0
  24. M. A. Bogle, K. A. Arndt, and J. S. Dover, "Evaluation of plasma skin regeneration technology in low-energy full-facial rejuvenation," Arch. Dermatol. 143, 168-174 (2007).
  25. K. D. Weltmann, E. Kindel, T. von Woedtke, M. Hahnel, M. Stieber, and R. Brandenburg, "Atmospheric-pressure plasma sources: prospective tools for plasma medicine," Pure Appl. Chem. 82, 1223-1237 (2010). https://doi.org/10.1351/PAC-CON-09-10-35
  26. J. Heinlin, G. Morfill, M. Landthaler, W. Stolz, G. Isbary, J. Zimmermann, T. Shimizu, and S. Karrer, "Plasma medicine: possible applications in dermatology," J. Dtsch. Dermatol. Ges. 8, 968-976 (2010).
  27. IEC 60601-1: changes from 2nd to 3rd edition, Intertek, 2008.
  28. D. Dobrynin, A. Wu, S. Kalghatgi, S. Park, N. Shainsky, K. Wasko, E. Dumani, R. Ownbey, S. Joshi, R. Sensnig, and A. D. Brooks, "Live pig skin tissue and wound toxicity of cold plasma treatment," Plasma Med. 1, 93-108 (2011). https://doi.org/10.1615/PlasmaMed.v1.i1.80
  29. K. Knoerzer, A. B. Murphy, M. Fresewinkel, P. Sanguansri, and J. Coventry, "Evaluation of methods for determining food surface temperature in the presence of low-pressure cool plasma," Inno. Food Sci. Emerg. Technol. 15, 23-30 (2012). https://doi.org/10.1016/j.ifset.2012.02.008
  30. C. A. Balaras and A. A. Argiriou, "Infrared thermography for building diagnostics," Energy Build. 34, 171-183 (2002). https://doi.org/10.1016/S0378-7788(01)00105-0
  31. A. M. Ovechkin and G. Yoon, "Infrared imaging for screening breast cancer metastasis based on abnormal temperature distribution," J. Opt. Soc. Korea 9, 157-161 (2005). https://doi.org/10.3807/JOSK.2005.9.4.157
  32. H. G. Jones, "Application of thermal imaging and infrared sensing in plant physiology and ecophysiology," Adv. Bot. Res. 41, 107-163 (2004).