DOI QR코드

DOI QR Code

The change of somatic cell embryogenesis in Kalanchoe pinnata because of agar concentration in stimulating root stress

뿌리 스트레스를 유발하는 agar농도에 따른 Kalanchoe pinnata의 체세포 배 형성 변화

  • Received : 2017.07.26
  • Accepted : 2017.09.05
  • Published : 2017.09.30

Abstract

Development of modern agricultural machinery and accompanying agricultural development cause soil compaction and reduce growth by stressing roots. Kalanchoe pinnata was used to investigate the impact of stress on rooting and changes in plant growth and reproduction. K. pinnata forms somatic embryos capable of asexual reproduction at the edge of leaves. Impact of root pressurization of K. pinnata on somatic embryogenesis and organ differentiation according to external stress factors was investigated by using a high concentration of agar and this phenomenon was studied histologically. Agar concentration in culture media ranged from 0.5%-1.5% to induce a compression effect on roots. The stem and leaf of K. pinnata were subjected to a microtechnique process to study changes in tissue. In vivo, K. pinnata produced 2nd and 3rd plantlets at edges of leaves from lack of water and excessive lighting conditions. In in vitro culture studies, the lower the concentration of agar, the higher the population and the higher the biomass, but plantlet did not occur in leaf bends. Conversely, as concentration of agar increased, increase in the number of individuals was low. Plantlet development occurred only in agar 1.5% medium. The difference in agar concentration was a stressor in the root of K. pinnata, and thus the pattern of asexual reproduction changed from the division method in root to a plantlet generation in leaf. This suggests root pressurization may act as stress and change in the plant reproduction pattern.

현대적인 농업기계발달과 그에 따른 집약농업 발달은 토양압축을 야기하고 뿌리에 압박 스트레스를 가하여 생육을 저하시킨다. 뿌리에 압박스트레스를 작용하여 식물 생장발육에 영향과 생식의 변화 양상을 연구하기 위해 Kalanchoe pinnata를 사용하였다. K. pinnata는 잎의 가장자리에서 무성생식이 가능한 체세포 배를 형성하는 것으로 알려져 왔다. Kalanchoe pinnata의 뿌리 압박 효과를 고농도 agar 농도를 사용하여 외부 스트레스 요인에 따른 체세포 배 형성 및 기관분화 경향의 변화를 관찰하고 이러한 현상을 조직학적으로 연구 하였다. 스트레스 요인으로 배양배지에서 agar의 농도를 0.5%에서 1.5%까지의 범위로 조성하여 뿌리에 압박효과를 야기하였고, 이후 K. pinnata의 줄기와 잎 등을 microtechnique 방법으로 조직의 변화를 연구하였다. In vivo에서 K. pinnata는 수분부족 및 과도한 광조건에 의해 잎 가장자리에서 $2^{nd}$, $3^{rd}$ plantlet이 생성이 되는 것을 확인하였다. 기내배양 연구에서 agar의 농도가 낮을수록 개체 수의 증가 및 생체량의 증가가 빠르지만 잎 만곡부에서 plantlet의 발생은 나타나지 않는 경향을 나타냈다. 반면에 agar의 농도가 증가할수록 개체수의 증가가 낮은 경향을 나타났다. 또한 agar 1.5%의 배지에서만 잎에서 plantlet 발생현상이 나타났다. Agar 농도의 차이는 K. pinnata의 뿌리에 스트레스 요인으로 작용하여 무성생식의 양상이 뿌리에서 포기 나누기 방법에서 잎에서 소식물체 형성으로 변화하는 경향을 나타났다. 이는 뿌리 압박 효과가 스트레스로 작용하여 식물 생식 양상을 변화 시킬 수 있게 되는 것으로 사료된다.

Keywords

References

  1. Arnold S, Sabal a I, Bozhkov P, Dyachok J, and Filonova L (2002) Developmental pathways of somatic embryogenesis. Pla Cell, Tiss and Org Cul 69:233-249 https://doi.org/10.1023/A:1015673200621
  2. Baldwin, JT (1938) Kalanchoe: The Genus and its Chromosomes. Ameri J Bot 25:572-579 https://doi.org/10.1002/j.1537-2197.1938.tb09263.x
  3. Beals CM (1923) An histological study of regenerative phenomena inplants. Ann Misso Bot Gard 10:369-384 https://doi.org/10.2307/2394117
  4. Buchheim JA, Colnurn SM, and Ranch JP (1989) Maturation of soybean somatic embryos and the transition to plant growth. Pla Physio 89:768-775 https://doi.org/10.1104/pp.89.3.768
  5. Garces HMP, Connie EM, Champagne B, Townsley T, Park S, Malho R, Pedroso MC, Harada JJ, and Sinha, NR (2007) Evolution of asexual reproduction in leaves of the genus Kalanchoe. PNAS 104:15578-15583 https://doi.org/10.1073/pnas.0704105104
  6. Hofmeister W (1868) Allgemeine Morphologie der Gewachse. p.422
  7. Howe MD (1931) A morphological study of the leaf notches of Bryophyllum calycinum. Ameri J Bot 13:387-390
  8. Hussain A, Black CR, Taylor IB, and Roberts JA (1999) Soil Compaction. A Role for Ethylene in Regulating Leaf Expansion and Shoot Growth in Tomato? Plat Physio 121:1227-1237 https://doi.org/10.1104/pp.121.4.1227
  9. Jung Y, Chung Y, and Kim D (2011) Screening of Genes Which are able to Affect Kalanchoe Vegetative Reproduction. J Life Sci 21:865-874 https://doi.org/10.5352/JLS.2011.21.6.865
  10. Koltunow AM and Grossniklaus U (2003) A Developmental Perspective. Annu. Rev. Plant Biol 54:547-574 https://doi.org/10.1146/annurev.arplant.54.110901.160842
  11. Lee SB, Choi WA, Hong SG, Park KL, Lee CR, Kim SC, and An MS (2015) Physical Properties of Organic Vegetable Cultivation Soils under Plastic Greenhouse. Kor J Org Agric 23:963-974 https://doi.org/10.11625/KJOA.2015.23.4.963
  12. Lynchand JP and Wojciechowski T (2015) Opportunities and challenges in the subsoil: pathways to deeper rooted crops. J Exper Bot 66:2199-2210 https://doi.org/10.1093/jxb/eru508
  13. Pedroso MC and Durzan DJ (2000) Effect of Different Gravity Environments on DNA Fragmentation and Cell Death in Kalanchoe Leaves. Ann Bot 86:983-994 https://doi.org/10.1006/anbo.2000.1260
  14. Shah AN, Tanveer M, Shahzad B, Yang G, Fahad S, Ali S, Bukhari MA, Tung SA, Hafeez A, and Souliyanonh B (2017) Soil compaction effects on soil health and crop productivity. Environ Sci Pollut Res
  15. Shen P, Wu Z, Wang C, Luo S, Zheng Y, Yu T, Sun X, Sun X, Wang C, and He X. (2016) Contributions of rational soil tillage to compaction stress in main peanut producing areas of China. Sci Repor 6:38629 https://doi.org/10.1038/srep38629