DOI QR코드

DOI QR Code

Interplay between Brassinosteroid and ABA signaling during early seedling development

유식물 발달과정에서 브라시노스테로이드와 앱시스산 신호전달의 상호작용 연구

  • Kim, Hyemin (Department of Biology, Chungbuk National University) ;
  • Hong, Jeongeui (Department of Biology, Chungbuk National University) ;
  • Cho, Yong-Gu (Department of Crop Science, Chungbuk National University) ;
  • Kang, Kwon Kyoo (Department of Horticulture, Hankyong National University) ;
  • Ryu, Hojin (Department of Biology, Chungbuk National University)
  • 김혜민 (충북대학교 자연과학대학 생물학과) ;
  • 홍정의 (충북대학교 자연과학대학 생물학과) ;
  • 조용구 (충북대학교 농업생명환경대학 식물자원환경화학부) ;
  • 강권규 (국립한경대학교 원예학과) ;
  • 류호진 (충북대학교 자연과학대학 생물학과)
  • Received : 2017.08.23
  • Accepted : 2017.08.28
  • Published : 2017.09.30

Abstract

Brassinosteroid (BR), a plant steroid hormone, plays a critical role in the growth and developmental processes through its canonical signaling and crosstalk with various internal and external signaling pathways. Recent studies have revealed the essential interplay mechanisms between BR and ABA during seed germination and early seedling establishment. However, molecular mechanisms for this important signaling crosstalk are largely unknown. To understand the crosstalk between BR-mediated signaling pathways and ABA functions during early seedling development, we carried out a comparative genome-wide transcriptome analysis with an Agilent Arabidopsis $4{\times}44K$ oligo chip. We selected and compared the expression patterns of ABA response genes in ABA-insensitive bes1-D mutant with wild type seedlings on which ABA was exogenously applied. As a result, we identified 2,353 significant differentially expressed genes (DEGs) in ABA-treated bes1-D and wild type seedlings. GO enrichment analysis revealed that ABA signaling, response, and metabolism were critically down-regulated by BR-activated signaling pathways. In addition, the genome-wide transcriptome analysis data revealed that BR-regulated signaling pathways were tightly connected to diverse signal cues including abiotic/biotic stress, auxin, ROS etc. In this study, we newly identified the molecular mechanisms of BR-mediated repression of ABA signaling outputs. Also, our data suggest that interplay among diverse signaling pathways is critical for the adaptive response of the plant to various environmental factors.

식물의 유일한 활성 스테로이드 호르몬인 Brassinosteroid (BR)는 다양한 내재적 또는 외부 신호 전달 경로와의 통합적인 결합을 통해 식물의 생장 및 발달 과정에서 중요한 기능을 하는 것으로 알려져 있다. 최근 식물학 연구들은 종자의 발아와 초기 발달과정에서 BR과 ABA 사이의 필수적인 상호작용 메커니즘이 존재하고 있음을 보고하고 있다. 하지만 이들 두 호르몬의 중요한 신호전달 상호작용에 대한 분자 메커니즘은 거의 알려지지 않았다. 식물의 초기 발달과정에서 BR에 의해 매개되는 ABA 신호전달과의 기능학적, 생물학적 상호작용 네트워크를 이해하기 위해 Agilent Arabidopsis $4{\times}44K$ 올리고 칩을 사용하여 비교 전사체 분석을 수행하였다. ABA에 반응하지 않는 bes1-D 돌연변이체에서의 ABA 처리에 따른 다양한 유전자의 발현 패턴을 야생형 식물과 비교 분석하였다. 그 결과 발현의 변화가 발생하는 유전자(DEGs) 2,353개를 확인하였다. GO 분석을 통해 ABA 신호전달 및 대사에 관여하는 유전자들이 BR 신호전달 경로에 의해 하향 조절되는 것으로 확인되었다. 뿐만 아니라, BR 신호전달 경로는 다양한 비생물학적/생물학적 스트레스, 오옥신 및 ROS 등 다양한 신호전달 체계와 밀접하게 연관되어 있음을 확인하였다. 본 연구를 통해 BR 신호전달의 활성화는 ABA 신호전달에 관여하는 다양한 유전자들의 발현을 억제함을 확인하였다. 또한 본 연구는 다양한 신호 경로 사이의 상호작용이 다양한 환경요인에 대한 식물의 적응 반응에 중요하게 작용할 수 있음을 보여주고 있다.

Keywords

References

  1. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT and others (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25-9 https://doi.org/10.1038/75556
  2. Choudhary SP, Yu JQ, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2012) Benefits of brassinosteroid crosstalk. Trends Plant Sci 17:594-605 https://doi.org/10.1016/j.tplants.2012.05.012
  3. Divi UK, Krishna P (2009) Brassinosteroid: a biotechnological target for enhancing crop yield and stress tolerance. N Biotechnol 26:131-6 https://doi.org/10.1016/j.nbt.2009.07.006
  4. Divi UK, Rahman T, Krishna P (2010) Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biol 10:151 https://doi.org/10.1186/1471-2229-10-151
  5. Gendron JM, Wang ZY (2007) Multiple mechanisms modulate brassinosteroid signaling. Curr Opin Plant Biol 10:436-41 https://doi.org/10.1016/j.pbi.2007.08.015
  6. Harnsomburana J, Green JM, Barb AS, Schaeffer M, Vincent L, Shyu CR (2011) Computable visually observed phenotype ontological framework for plants. BMC Bioinformatics 12:260 https://doi.org/10.1186/1471-2105-12-260
  7. He JX, Gendron JM, Yang Y, Li J, Wang ZY (2002) The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis. Proc Natl Acad Sci USA 99:10185-90 https://doi.org/10.1073/pnas.152342599
  8. Kagale S, Divi UK, Krochko JE, Keller WA, Krishna P (2007) Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta 225:353-64
  9. Kim H, Moon S, Bae W, Won K, Kim YK, Kang KK, Ryu H (2016) Massive identification of key genes involved in pathogen defense and multi-stress tolerance by using microarray and Network analysis. J. Plant Biotech. 43:347-358 https://doi.org/10.5010/JPB.2016.43.3.347
  10. Kutschera U, Wang ZY (2012) Brassinosteroid action in flowering plants: a Darwinian perspective. J Exp Bot 63:3511-22 https://doi.org/10.1093/jxb/ers065
  11. Lee T, Kim H, Lee I (2015a) Network-assisted crop systems genetics: network inference and integrative analysis. Curr Opin Plant Biol 24:61-70 https://doi.org/10.1016/j.pbi.2015.02.001
  12. Li J, Chory J (1997) A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90:929-38 https://doi.org/10.1016/S0092-8674(00)80357-8
  13. Li J, Wen J, Lease KA, Doke JT, Tax FE, Walker JC (2002) BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110: 213-22 https://doi.org/10.1016/S0092-8674(02)00812-7
  14. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-{\Delta}{\Delta}Ct}$ method. Methods 25:402-408 https://doi.org/10.1006/meth.2001.1262
  15. Lopez-Molina L, Mongrand S, McLachlin DT, Chait BT, Chua NH (2002) ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. Plant J. 32:317-328 https://doi.org/10.1046/j.1365-313X.2002.01430.x
  16. Oh E, Zhu JY, Ryu H, Hwang I, Wang ZY (2014) TOPLESS mediates brassinosteroid-induced transcriptional repression through interaction with BZR1. Nat Commun 5:4140 https://doi.org/10.1038/ncomms5140
  17. Rhee SY, Dickerson J, Xu D (2006) Bioinformatics and its applications in plant biology. Annu Rev Plant Biol 57:335-60 https://doi.org/10.1146/annurev.arplant.56.032604.144103
  18. Ryu H, Cho H, Bae W, Hwang I (2014) Control of early seedling development by BES1/TPL/HDA19-mediated epigenetic regulation of ABI3. Nat Commun 5:4138 https://doi.org/10.1038/ncomms5138
  19. Ryu H, Cho H, Kim K, Hwang I (2010a) Phosphorylation dependent nucleocytoplasmic shuttling of BES1 is a key regulatory event in brassinosteroid signaling. Mol Cells 29:283-90 https://doi.org/10.1007/s10059-010-0035-x
  20. Ryu H, Kim K, Cho H, Park J, Choe S, Hwang I (2007) Nucleocytoplasmic shuttling of BZR1 mediated by phosphorylation is essential in Arabidopsis brassinosteroid signaling. Plant Cell 19:2749-62 https://doi.org/10.1105/tpc.107.053728
  21. Shin SY, Chung H, Kim SY, Nam KH (2016) BRI1-EMS-suppressor 1 gain-of-function mutant shows higher susceptibility to necrotrophic fungal infection. Biochem Biophys Res Commun 470:864-9 https://doi.org/10.1016/j.bbrc.2016.01.128
  22. Supek F, Bosnjak M, Skunca N, Smuc T (2011) REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One 6:e21800 https://doi.org/10.1371/journal.pone.0021800
  23. Vriet C, Russinova E, Reuzeau C (2012) Boosting crop yields with plant steroids. Plant Cell 24:842-57 https://doi.org/10.1105/tpc.111.094912
  24. Wang ZY, Bai MY, Oh E, Zhu JY (2012) Brassinosteroid signaling network and regulation of photomorphogenesis. Annu Rev Genet 46:701-24 https://doi.org/10.1146/annurev-genet-102209-163450
  25. Wang ZY, Nakano T, Gendron J, He J, Chen M, Vafeados D, Yang Y, Fujioka S, Yoshida S, Asami T and others (2002) Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Dev Cell 2:505-13 https://doi.org/10.1016/S1534-5807(02)00153-3
  26. Yin Y, Wang ZY, Mora-Garcia S, Li J, Yoshida S, Asami T, Chory J (2002) BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell 109:181-91 https://doi.org/10.1016/S0092-8674(02)00721-3