DOI QR코드

DOI QR Code

The Gac/Rsm Signaling Pathway of a Biocontrol Bacterium, Pseudomonas chlororaphis O6

  • Anderson, Anne J. (Department of Biology, Utah State University) ;
  • Kang, Beom Ryong (Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Kim, Young Cheol (Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University)
  • 투고 : 2017.06.24
  • 심사 : 2017.08.06
  • 발행 : 2017.09.30

초록

Pseudomonas chlororaphis O6, isolated from the roots of dryland, field-grown commercial wheat in the USA, enhances plant health and therefore it is used in agriculture as a biofertilizer and biocontrol agent. The metabolites produced by this pseudomonad stimulate plant growth through direct antagonism of pathogens and by inducing systemic resistance in the plant. Studies upon P. chlororaphis O6 identify the pathways through which defined bacterial metabolites generate protection against pathogenic microbes, insects, and nematodes. P. chlororaphis O6 also triggers plant resistance to drought and salinity stresses. The beneficial determinants are produced from bacterial cells as they form biofilms during root colonization. Molecular control these processes in P. chlororaphis O6 involves the global regulatory Gac/Rsm signaling cascade with cross-talk between other global regulatory pathways. The Gac/Rsm regulon allows for coordinate phasing of expression of the genes that encode these beneficial traits among a community of cells. This review provides insights on the Gac/Rsm regulon in expression of beneficial traits of the P. chlororaphis O6 which can contribute to help yield enhancement and quality in agricultural production.

키워드

참고문헌

  1. Adams, J., Wright, M., Wagner, H., Valiente, J., Britt, D. and Anderson, A. 2017. Cu from dissolution of CuO nanoparticles signals changes in root morphology. Plant Physiol. Biochem. 110: 108-117. https://doi.org/10.1016/j.plaphy.2016.08.005
  2. Anderson-Prouty, A. J. and Albersheim, P. 1975. Host-pathogen interactions: VIII. Isolation of a pathogen-synthesized fraction rich in glucan that elicits a defense response in the pathogen's host. Plant Physiol. 56: 286-291. https://doi.org/10.1104/pp.56.2.286
  3. Anderson, A. J., Britt, D. W., Johnson, J., Narasimhan, G. and Rodriguez, A. 2005. Physicochemical parameters influencing the formation of biofilms compared in mutant and wild-type cells of Pseudomonas chlororaphis O6. Water Sci. Technol. 52: 21-25.
  4. Audenaert, K., Pattery, T., Cornelis, P. and Hofte, M. 2002. Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin, and pyocyanin. Mol. Plant-Microbe Interact. 15: 1147-1156. https://doi.org/10.1094/MPMI.2002.15.11.1147
  5. Ausubel, F. M. 2005. Are innate immune signaling pathways in plants and animals conserved? Nat. Immunol. 6: 973-979. https://doi.org/10.1038/ni1253
  6. Aznar, A. and Dellagi, A. 2015. New insights into the role of siderophores as triggers of plant immunity: what can we learn from animals? J. Exp. Bot. 66: 3001-3010. https://doi.org/10.1093/jxb/erv155
  7. Aznar, A., Chen, N. W., Rigault, M., Riache, N., Joseph, D., Desmaele, D., Mouille, G., Boutet, S., Soubigou-Taconnat, L., Renou, J.-P., Thomine, S., Expert, D. and Dellagi, A. 2014. Scavenging iron: a novel mechanism of plant immunity activation by microbial siderophores. Plant Physiol. 164: 2167-2183. https://doi.org/10.1104/pp.113.233585
  8. Baraquet, C. and Harwood, C. S. 2016. FleQ DNA binding consensus sequence revealed by studies of FleQ-dependent regulation of biofilm gene expression in Pseudomonas aeruginosa. J. Bacteriol. 198: 178-186. https://doi.org/10.1128/JB.00539-15
  9. Bashan, Y., de-Bashan, L. E., Prabhu, S. R. and Hernandez, J.-P. 2014. Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998-2013). Plant Soil 378: 1-33. https://doi.org/10.1007/s11104-013-1956-x
  10. Blankenfeldt, W. and Parsons, J. F. 2014. The structural biology of phenazine biosynthesis. Curr. Opin. Struct. Biol. 29: 26-33. https://doi.org/10.1016/j.sbi.2014.08.013
  11. Bouffartigues, E., Moscoso, J. A., Duchesne, R., Rosay, T., Fito-Boncompte, L., Gicquel, G., Maillot, O., Benard, M., Bazire, A., Brenner-Weiss, G., Lesouhaitier, O., Lerouge, P., Dufour, A., Orange, N., Feuilloley, M. G., Overhage, J., Filloux, A. and Chevalier, S. 2015. The absence of the Pseudomonas aeruginosa OprF protein leads to increased biofilm formation through variation in cdi-GMP level. Front. Microbiol. 6: 630.
  12. Brencic, A. and Lory, S. 2009. Determination of the regulon and identification of novel mRNA targets of Pseudomonas aeruginosa RsmA. Mol. Microbiol. 72: 612-632. https://doi.org/10.1111/j.1365-2958.2009.06670.x
  13. Brencic, A., McFarland, K. A., McManus, H. R., Castang, S., Mogno, I., Dove, S. L. and Lory, S. 2009. The GacS/GacA signal transduction system of Pseudomonas aeruginosa acts exclusively through its control over the transcription of the RsmY and RsmZ regulatory small RNAs. Mol. Microbiol. 73: 434-445. https://doi.org/10.1111/j.1365-2958.2009.06782.x
  14. Chancey, S. T., Wood, D. W. and Pierson, L. S., III. 1999. Two-component transcriptional regulation of N-acyl-homoserine lactone production in Pseudomonas aureofaciens. Appl. Environ. Microbiol. 65: 2294-2299.
  15. Charkowski, A. O. 2009. Decaying signals: will understanding bacterialplant communications lead to control of soft rot? Curr. Opin. Biotechnol. 20: 178-184. https://doi.org/10.1016/j.copbio.2009.01.005
  16. Cheng, X., Bruijn, I., Voort, M., Loper, J. E. and Raaijmakers, J. M. 2013. The Gac regulon of Pseudomonas fluorescens SBW25. Environ. Microbiol. Rep. 5: 608-619. https://doi.org/10.1111/1758-2229.12061
  17. Cho, S.-M., Kang, B. R. and Kim, Y. C. 2013. Transcriptome analysis of induced systemic drought tolerance elicited by Pseudomonas chlororaphis O6 in Arabidopsis thaliana. Plant Pathol. J. 29: 209-220. https://doi.org/10.5423/PPJ.SI.07.2012.0103
  18. Cho, S.-M., Kang, B.-R., Kim, J.-J. and Kim, Y.-C. 2012. Induced systemic drought and salt tolerance by Pseudomonas chlororaphis O6 root colonization is mediated by ABA-independent stomatal closure. Plant Pathol. J. 28: 202-206. https://doi.org/10.5423/PPJ.2012.28.2.202
  19. Cho, S.-M., Park, J.-Y., Han, S.-H., Anderson, A. J., Yang, K.-Y., Gardener, B. M. and Kim, Y.-C. 2011. Identification and transcriptional analysis of priming genes in Arabidopsis thaliana induced by root colonization with Pseudomonas chlororaphis O6. Plant Pathol. J. 27: 272-279. https://doi.org/10.5423/PPJ.2011.27.3.272
  20. Cho, S. M., Kang, B. R., Han, S. H., Anderson, A. J., Park, J.-Y., Lee, Y.-H., Cho, B. H., Yang, K.-Y., Ryu, C.-M. and Kim, Y. C. 2008. 2R,3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol. Plant-Microbe Interact. 21: 1067-1075. https://doi.org/10.1094/MPMI-21-8-1067
  21. Cho, S. M., Kang, E. Y., Kim, M. S., Yoo, S. J., Im, Y. J., Kim, Y. C., Yang, K. Y., Kim, K. Y., Kim, K. S., Choi, Y. S. and Cho, B. H. 2010. Jasmonatedependent expression of a galactinol synthase gene is involved in priming of systemic fungal resistance in Arabidopsis thaliana. Botany 88: 452-461. https://doi.org/10.1139/B10-009
  22. Chung, J.-H., Song, G. C. and Ryu, C.-M. 2016. Sweet scents from good bacteria: case studies on bacterial volatile compounds for plant growth and immunity. Plant Mol. Biol. 90: 677-687. https://doi.org/10.1007/s11103-015-0344-8
  23. Coggan, K. A. and Wolfgang, M. C. 2012. Global regulatory pathways and cross-talk control Pseudomonas aeruginosa environmental lifestyle and virulence phenotype. Curr. Issues Mol. Biol. 14: 47-70.
  24. Conrath, U., Beckers, G. J., Langenbach, C. J. and Jaskiewicz, M. R. 2015. Priming for enhanced defense. Annu. Rev. Phytopathol. 53: 97-119. https://doi.org/10.1146/annurev-phyto-080614-120132
  25. Davey, M. E. and O'toole, G. A. 2000. Microbial biofilms: from ecology to molecular genetics. Microbiol. Mol. Biol. Rev. 64: 847-867. https://doi.org/10.1128/MMBR.64.4.847-867.2000
  26. Dimkpa, C. O., Zeng, J., McLean, J. E., Britt, D. W., Zhan, J. and Anderson, A. J. 2012. Production of indole-3-acetic acid via the indole-3-acetamide pathway in the plant-beneficial bacterium Pseudomonas chlororaphis O6 is inhibited by ZnO nanoparticles but enhanced by CuO nanoparticles. Appl. Environ. Microbiol. 78: 1404-1410. https://doi.org/10.1128/AEM.07424-11
  27. Drenkard, E. and Ausubel, F. M. 2002. Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 416: 740-743. https://doi.org/10.1038/416740a
  28. Dridi, B., Lupien, A., Bergeron, M. G., Leprohon, P. and Ouellette, M. 2015. Differences in antibiotic-induced oxidative stress responses between laboratory and clinical isolates of Streptococcus pneumoniae. Antimicrob. Agents Chemother. 59: 5420-5426. https://doi.org/10.1128/AAC.00316-15
  29. Frangipani, E., Visaggio, D., Heeb, S., Kaever, V., Camara, M., Visca, P. and Imperi, F. 2014. The Gac/Rsm and cyclic-di-GMP signalling networks coordinately regulate iron uptake in Pseudomonas aeruginosa. Environ. Microbiol. 16: 676-688. https://doi.org/10.1111/1462-2920.12164
  30. Fravel, D. R. 2005. Commercialization and implementation of biocontrol. Annu. Rev. Phytopathol. 43: 337-359. https://doi.org/10.1146/annurev.phyto.43.032904.092924
  31. Girard, G. and Rigali, S. 2011. Role of the phenazine-inducing protein Pip in stress resistance of Pseudomonas chlororaphis. Microbiology 157: 398-407. https://doi.org/10.1099/mic.0.043075-0
  32. Girard, G., Barends, S., Rigali, S., van Rij, E. T., Lugtenberg, B. J. J. and Bloemberg, G. V. 2006a. Pip, a novel activator of phenazine biosynthesis in Pseudomonas chlororaphis PCL1391. J. Bacteriol. 188: 8283-8293. https://doi.org/10.1128/JB.00893-06
  33. Girard, G., van Rij, E. T., Lugtenberg, B. J. J. and Bloemberg, G. V. 2006b. Regulatory roles of psrA and rpoS in phenazine-1-carboxamide synthesis by Pseudomonas chlororaphis PCL1391. Microbiology 152: 43-58. https://doi.org/10.1099/mic.0.28284-0
  34. Goodman, J., Mclean, J. E., Britt, D. W. and Anderson, A. J. 2016. Sublethal doses of ZnO nanoparticles remodel production of cell signaling metabolites in the root colonizer Pseudomonas chlororaphis O6. Environ. Sci. Nano 3: 1103-1113. https://doi.org/10.1039/C6EN00135A
  35. Han, S. H., Anderson, A. J., Yang, K. Y., Cho, B. H., Kim, K. Y., Lee, M. C., Kim, Y. H. and Kim, Y. C. 2006. Multiple determinants influence root colonization and induction of induced systemic resistance by Pseudomonas chlororaphis O6. Mol. Plant Pathol. 7: 463-472. https://doi.org/10.1111/j.1364-3703.2006.00352.x
  36. Hassan, K. A., Johnson, A., Shaffer, B. T., Ren, Q., Kidarsa, T. A., Elbourne, L. D. H., Hartney, S., Duboy, R., Goebel, N. C., Zabriskie, T. M., Paulsen, I. T. and Loper, J. E. 2010. Inactivation of the GacA response regulator in Pseudomonas fluorescens Pf-5 has farreaching transcriptomic consequences. Environ. Microbiol. 12: 899-915. https://doi.org/10.1111/j.1462-2920.2009.02134.x
  37. Hay, I. D., Wang, Y., Moradali, M. F., Rehman, Z. U. and Rehm, B. H. 2014. Genetics and regulation of bacterial alginate production. Environ. Microbiol. 16: 2997-3011. https://doi.org/10.1111/1462-2920.12389
  38. Heeb, S. and Haas, D. 2001. Regulatory roles of the GacS/GacA two-component system in plant-associated and other gramnegative bacteria. Mol. Plant-Microbe Interact. 14: 1351-1363. https://doi.org/10.1094/MPMI.2001.14.12.1351
  39. Hegsted, A. 2010. Acyl Homoserine Lactone Signaling in Pseudomonas chlororaphis 06. Undergraduate Honors Biology, Utah State University, USA.
  40. Heil, M. and Bostock, R. M. 2002. Induced systemic resistance (ISR) against pathogens in the context of induced plant defences. Ann. Bot. 89: 503-512. https://doi.org/10.1093/aob/mcf076
  41. Hickman, J. W. and Harwood, C. S. 2008. Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol. Microbiol. 69: 376-389. https://doi.org/10.1111/j.1365-2958.2008.06281.x
  42. Hirsch, P. R., Miller, A. J. and Dennis, P. G. 2013. Do root exudates exert more influence on rhizosphere bacterial community structure than other rhizodeposits. In: Molecular Microbial Ecology of the Rhizosphere, ed. by F. J. de Bruijin, pp. 229-242. John Wiley & Sons, Inc., New Jersey, USA.
  43. Housley, L., Anderson, T., Sontag, N., Han, S.-H., Britt, D. W. and Anderson, A. J. 2009. Pluronics' influence on pseudomonad biofilm and phenazine production. FEMS Microbiol. Lett. 293: 148-153. https://doi.org/10.1111/j.1574-6968.2009.01528.x
  44. Humair, B., Wackwitz, B. and Haas, D. 2010. GacA-controlled activation of promoters for small RNA genes in Pseudomonas fluorescens. Appl. Environ. Microbiol. 76: 1497-1506. https://doi.org/10.1128/AEM.02014-09
  45. Jones, J. D. and Dangl, J. L. 2006. The plant immune system. Nature 444: 323-329. https://doi.org/10.1038/nature05286
  46. Kamilova, F., Kravchenko, L. V., Shaposhnikov, A. I., Azarova, T., Makarova, N. and Lugtenberg, B. 2006. Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol. Plant-Microbe Interact. 19: 250-256. https://doi.org/10.1094/MPMI-19-0250
  47. Kang, B. R., Cho, B. H., Anderson, A. J. and Kim, Y. C. 2004. The global regulator GacS of a biocontrol bacterium Pseudomonas chlororaphis O6 regulates transcription from the rpoS gene encoding a stationary-phase sigma factor and affects survival in oxidative stress. Gene 325: 137-143. https://doi.org/10.1016/j.gene.2003.10.004
  48. Kang, B. R., Yang, K. Y., Cho, B. H., Han, T. H., Kim, I. S., Lee, M. C., Anderson, A. J. and Kim, Y. C. 2006. Production of indole-3-acetic acid in the plant-beneficial strain Pseudomonas chlororaphis O6 is negatively regulated by the global sensor kinase GacS. Curr. Microbiol. 52: 473-476. https://doi.org/10.1007/s00284-005-0427-x
  49. Kang, B. R., Han, S.-H., Zdor, R. E., Anderson, A. J., Spencer, M., Yang, K. Y., Kim, Y. H., Lee, M. C., Cho, B. H. and Kim, Y. C. 2007. Inhibition of seed germination and induction of systemic disease resistance by Pseudomonas chlororaphis O6 requires phenazine production regulated by the global regulator, gacS. J. Microbiol. Biotechnol. 17: 586-593.
  50. Khan, S. R., Herman, J., Krank, J., Serkova, N. J., Churchill, M. E. A., Suga, H. and Farrand, S. K. 2007. N-(3-hydroxyhexanoyl)-L-homoserine lactone is the biologically relevant quormone that regulates the phz operon of Pseudomonas chlororaphis strain 30-84. Appl. Environ. Microbiol. 73: 7443-7455. https://doi.org/10.1128/AEM.01354-07
  51. Kim, C. H., Kim, Y. H., Anderson, A. J. and Kim, Y. C. 2014a. Proteomic analysis of a global regulator GacS sensor kinase in the rhizobacterium, Pseudomonas chlororaphis O6. Plant Pathol. J. 30: 220-227. https://doi.org/10.5423/PPJ.NT.02.2014.0012
  52. Kim, J. S., Kim, Y. H., Anderson, A. J. and Kim, Y. C. 2014b. The sensor kinase GacS negatively regulates flagellar formation and motility in a biocontrol bacterium, Pseudomonas chlororaphis O6. Plant Pathol. J. 30: 215-219. https://doi.org/10.5423/PPJ.NT.11.2013.0109
  53. Kim, J. S., Kim, Y. H., Park, J. Y., Anderson, A. J. and Kim, Y. C. 2014c. The global regulator GacS regulates biofilm formation in Pseudomonas chlororaphis O6 differently with carbon source. Can. J. Microbiol. 60: 133-138. https://doi.org/10.1139/cjm-2013-0736
  54. Kim, M. S., Kim, Y. C. and Cho, B. H. 2004. Gene expression analysis in cucumber leaves primed by root colonization with Pseudomonas chlororaphis O6 upon challenge-inoculation with Corynespora cassiicola. Plant Biol. (Stuttg.) 6: 105-108. https://doi.org/10.1055/s-2004-817803
  55. Kloepper, J. W., Leong, J., Teintze, M. and Schroth, M. N. 1980. Pseudomonas siderophores: a mechanism explaining diseasesuppressive soils. Curr. Microbiol. 4: 317-320. https://doi.org/10.1007/BF02602840
  56. Kohler, T., Curty, L. K., Barja, F., van Delden, C. and Pechere, J. C. 2000. Swarming of Pseudomonas aeruginosa is dependent on cellto-cell signaling and requires flagella and pili. J. Bacteriol. 182: 5990-5996. https://doi.org/10.1128/JB.182.21.5990-5996.2000
  57. Krell, T., Lacal, J., Busch, A., Silva-Jimenez, H., Guazzaroni, M.-E. and Ramos, J. L. 2010. Bacterial sensor kinases: diversity in the recognition of environmental signals. Annu. Rev. Microbiol. 64: 539-559. https://doi.org/10.1146/annurev.micro.112408.134054
  58. Kuc, J. 1982. Induced immunity to plant disease. Bioscience 32: 854-860. https://doi.org/10.2307/1309008
  59. Kuchma, S. L., Griffin, E. F. and O'Toole, G. A. 2012. Minor pilins of the type IV pilus system participate in the negative regulation of swarming motility. J. Bacteriol. 194: 5388-5403. https://doi.org/10.1128/JB.00899-12
  60. Kupferschmied, P., Maurhofer, M. and Keel, C. 2013. Promise for plant pest control: root-associated pseudomonads with insecticidal activities. Front. Plant Sci. 4: 287.
  61. Lalaouna, D., Fochesato, S., Sanchez, L., Schmitt-Kopplin, P., Haas, D., Heulin, T. and Achouak, W. 2012. Phenotypic switching in Pseudomonas brassicacearum involves GacS- and GacA-dependent Rsm small RNAs. Appl. Environ. Microbiol. 78: 1658-1665. https://doi.org/10.1128/AEM.06769-11
  62. Lapouge, K., Sineva, E., Lindell, M., Starke, K., Baker, C. S., Babitzke, P. and Haas, D. 2007. Mechanism of hcnA mRNA recognition in the Gac/Rsm signal transduction pathway of Pseudomonas fluorescens. Mol. Microbiol. 66: 341-356. https://doi.org/10.1111/j.1365-2958.2007.05909.x
  63. Lee, H. R., Jung, J., Riu, M. and Ryu, C. M. 2017. A new frontier for biological control against plant pathogenic nematodes and insect pests I: by microbes. Res. Plant Dis. 23: 114-149. (In Korean) https://doi.org/10.5423/RPD.2017.23.2.114
  64. Lee, J. H., Ma, K. C., Ko, S. J., Kang, B. R., Kim, I. S. and Kim, Y. C. 2011. Nematicidal activity of a nonpathogenic biocontrol bacterium, Pseudomonas chlororaphis O6. Curr. Microbiol. 62: 746-751. https://doi.org/10.1007/s00284-010-9779-y
  65. Lugtenberg, B. J., de Weger, L. A. and Bennett, J. 1991. Microbial stimulation of plant growth and protection from disease. Curr. Opin. Biotechnol. 2: 457-464. https://doi.org/10.1016/S0958-1669(05)80156-9
  66. Malone, J. G. 2015. Role of small colony variants in persistence of Pseudomonas aeruginosa infections in cystic fibrosis lungs. Infect. Drug Resist. 8: 237-247.
  67. Mann, E. E. and Wozniak, D. J. 2012. Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiol. Rev. 36: 893-916. https://doi.org/10.1111/j.1574-6976.2011.00322.x
  68. Martineau, N., McLean, J. E., Dimkpa, C. O., Britt, D. W. and Anderson, A. J. 2014. Components from wheat roots modify the bioactivity of ZnO and CuO nanoparticles in a soil bacterium. Environ. Pollut. 187: 65-72. https://doi.org/10.1016/j.envpol.2013.12.022
  69. Martinez-Granero, F., Navazo, A., Barahona, E., Redondo-Nieto, M., Rivilla, R. and Martin, M. 2012. The Gac-Rsm and SadB signal transduction pathways converge on AlgU to downregulate motility in Pseudomonas fluorescens. PLoS One 7: e31765. https://doi.org/10.1371/journal.pone.0031765
  70. McClean, K. H., Winson, M. K., Fish, L., Taylor, A., Chhabra, S. R., Camara, M., Daykin, M., Lamb, J. H., Swift, S., Bycroft, B. W., Stewart, G. S. and Williams, P. 1997. Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143: 3703-3711. https://doi.org/10.1099/00221287-143-12-3703
  71. Nagata, T., Oobo, T. and Aozasa, O. 2013. Efficacy of a bacterial siderophore, pyoverdine, to supply iron to Solanum lycopersicum plants. J. Biosci. Bioeng. 115: 686-690. https://doi.org/10.1016/j.jbiosc.2012.12.018
  72. Oh, S. A., Kim, J. S., Han, S. H., Park, J. Y., Dimkpa, C., Edlund, C., Anderson, A. J. and Kim, Y. C. 2013a. The GacS-regulated sigma factor RpoS governs production of several factors involved in biocontrol activity of the rhizobacterium Pseudomonas chlororaphis O6. Can. J. Microbiol. 59: 556-562. https://doi.org/10.1139/cjm-2013-0062
  73. Oh, S. A., Kim, J. S., Park, J. Y., Han, S. H., Dimkpa, C., Anderson, A. J. and Kim, Y. C. 2013b. The RpoS sigma factor negatively regulates production of IAA and siderophore in a biocontrol rhizobacterium, Pseudomonas chlororaphis O6. Plant Pathol. J. 29: 323-329. https://doi.org/10.5423/PPJ.NT.01.2013.0013
  74. Pal, K. K. and Gardener, B. M. 2006. Biological control of plant pathogens. The Plant Health Instrutror 2: 1117-1142.
  75. Papenfort, K. and Bassler, B. L. 2016. Quorum sensing signal-response systems in Gram-negative bacteria. Nat. Rev. Microbiol. 14: 576-588. https://doi.org/10.1038/nrmicro.2016.89
  76. Park, J. Y., Kang, B. R., Ryu, C.-M., Anderson, A. J. and Kim, Y. C. 2018. Polyamine is a critical determinant of Pseudomonas chlororaphis O6 for GacS-dependent bacterial cell growth and biocontrol capacity. Mol. Plant Pathol. DOI: 10.1111/mpp.12610
  77. Park, J. Y., Oh, S. A., Anderson, A. J., Neiswender, J., Kim, J. C. and Kim, Y. C. 2011. Production of the antifungal compounds phenazine and pyrrolnitrin from Pseudomonas chlororaphis O6 is differentially regulated by glucose. Lett. Appl. Microbiol. 52: 532-537. https://doi.org/10.1111/j.1472-765X.2011.03036.x
  78. Park, M. R., Kim, Y. C., Park, J. Y., Han, S. H., Kim, K. Y., Lee, S. W. and Kim, I. S. 2008. Identification of an ISR-related metabolite produced by Pseudomonas chlororaphis O6 against the wildfire pathogen Pseudomonas syringae pv. tabaci in tobacco. J. Microbiol. Biotechnol. 18: 1659-1662.
  79. Pieterse, C. M., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C. and Bakker, P. A. 2014. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52: 347-375. https://doi.org/10.1146/annurev-phyto-082712-102340
  80. Pieterse, C. M. J., Van Wees, S. C. M., Van Pelt, J. A., Knoester, M., Laan, R., Gerrits, H., Weisbeek, P. J. and Van Loon, L. C. 1998. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10: 1571-1580. https://doi.org/10.1105/tpc.10.9.1571
  81. Radtke, C., Cook, W. S. and Anderson, A. 1994. Factors affecting antagonism of the growth of Phanerochaete chrysosporium by bacteria isolated from soils. Appl. Microbiol. Biotechnol. 41: 274-280. https://doi.org/10.1007/BF00186972
  82. Rangel, L. I., Henkels, M. D., Shaffer, B. T., Walker, F. L., Davis, E. W., 2nd, Stockwell, V. O., Bruck, D., Taylor, B. J. and Loper, J. E. 2016. Characterization of toxin complex gene clusters and insect toxicity of bacteria representing four subgroups of Pseudomonas fluorescens. PLoS One 11: e0161120. https://doi.org/10.1371/journal.pone.0161120
  83. Rodrigue, A., Quentin, Y., Lazdunski, A., Mejean, V. and Foglino, M. 2000. Two-component systems in Pseudomonas aeruginosa: why so many? Trends Microbiol. 8: 498-504. https://doi.org/10.1016/S0966-842X(00)01833-3
  84. Romling, U., Galperin, M. Y. and Gomelsky, M. 2013. Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol. Mol. Biol. Rev. 77: 1-52. https://doi.org/10.1128/MMBR.00043-12
  85. Ryu, C.-M., Kang, B. R., Han, S. H., Cho, S. M., Kloepper, J. W., Anderson, A. J. and Kim, Y. C. 2007. Tobacco cultivars vary in induction of systemic resistance against Cucumber mosaic virus and growth promotion by Pseudomonas chlororaphis O6 and its gacS mutant. Eur. J. Plant Pathol. 119: 383-390. https://doi.org/10.1007/s10658-007-9168-y
  86. Salcher, O. and Lingens, F. 1980. Metabolism of tryptophan by Pseudomonas aureofaciens and its relationship to pyrrolnitrin biosynthesis. J. Gen. Microbiol. 121: 465-471.
  87. Schenk, S. T. and Schikora, A. 2015. AHL-priming functions via oxylipin and salicylic acid. Front. Plant Sci. 5: 784.
  88. Schikora, A., Schenk, S. T. and Hartmann, A. 2016. Beneficial effects of bacteria-plant communication based on quorum sensing molecules of the N-acyl homoserine lactone group. Plant Mol. Biol. 90: 605-612. https://doi.org/10.1007/s11103-016-0457-8
  89. Schippers, B., Bakker, A. W. and Bakker, P. A. H. M. 1987. Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu. Rev. Phytopathol. 25: 339-358. https://doi.org/10.1146/annurev.py.25.090187.002011
  90. Selin, C., Fernando, W. G. and de Kievit, T. 2012. The PhzI/PhzR quorum-sensing system is required for pyrrolnitrin and phenazine production, and exhibits cross-regulation with RpoS in Pseudomonas chlororaphis PA23. Microbiology 158: 896-907. https://doi.org/10.1099/mic.0.054254-0
  91. Shah, N., Klaponski, N., Selin, C., Rudney, R., Fernando, W. G. D., Belmonte, M. F. and de Kievit, T. R. 2016. PtrA Is functionally intertwined with GacS in regulating the biocontrol activity of Pseudomonas chlororaphis PA23. Front. Microbiol. 7: 1512.
  92. Shah, P. and Swiatlo, E. 2008. A multifaceted role for polyamines in bacterial pathogens. Mol. Microbiol. 68: 4-16. https://doi.org/10.1111/j.1365-2958.2008.06126.x
  93. Sonnleitner, E. and Haas, D. 2011. Small RNAs as regulators of primary and secondary metabolism in Pseudomonas species. Appl. Microbiol. Biotechnol. 91: 63-79. https://doi.org/10.1007/s00253-011-3332-1
  94. Spaepen, S. and Vanderleyden, J. 2011. Auxin and plant-microbe interactions. Cold Spring Harb. Perspect. Biol. 3: a001438.
  95. Spencer, M., Ryu, C.-M., Yang, K.-Y., Kim, Y. C., Kloepper, J. W. and Anderson, A. J. 2003. Induced defence in tobacco by Pseudomonas chlororaphis strain O6 involves at least the ethylene pathway. Physiol. Mol. Plant Pathol. 63: 27-34. https://doi.org/10.1016/j.pmpp.2003.09.002
  96. Stock, J. B., Stock, A. M. and Mottonen, J. M. 1990. Signal transduction in bacteria. Nature 344: 395-400. https://doi.org/10.1038/344395a0
  97. Takeuchi, K., Kiefer, P., Reimmann, C., Keel, C., Dubuis, C., Rolli, J., Vorholt, J. A. and Haas, D. 2009. Small RNA-dependent expression of secondary metabolism is controlled by Krebs cycle function in Pseudomonas fluorescens. J. Biol. Chem. 284: 34976-34985. https://doi.org/10.1074/jbc.M109.052571
  98. Timmusk, S., Kim, S.-B., Nevo, E., Abd El Daim, I., Ek, B., Bergquist, J. and Behers, L. 2015. Sfp-type PPTase inactivation promotes bacterial biofilm formation and ability to enhance wheat drought tolerance. Front. Microbiol. 6: 387.
  99. Valentini, M. and Filloux, A. 2016. Biofilms and cyclic di-GMP (c-di-GMP) signaling: lessons from Pseudomonas aeruginosa and other bacteria. J. Biol. Chem. 291: 12547-12555. https://doi.org/10.1074/jbc.R115.711507
  100. Vansuyt, G., Robin, A., Briat, J.-F., Curie, C. and Lemanceau, P. 2007. Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana. Mol. Plant-Microbe Interact. 20: 441-447. https://doi.org/10.1094/MPMI-20-4-0441
  101. Veselova, M. A., Lipasova, V. A., Ovadis, M. I., Chernin, L. S. and Khmel, I. A. 2009. Structure and expression of gene vfr in Pseudomonas chlororaphis 449. Genetika 45: 1203-1210.
  102. Wackett, L. P. 2003. An annotated selection of World Wide Web sites relevant to the topics in Environmental Microbiology. Environ. Microbiol. 5: 1221-1222.
  103. Wang, D., Yu, J. M., Pierson, L. S., 3rd and Pierson, E. A. 2012. Differential regulation of phenazine biosynthesis by RpeA and RpeB in Pseudomonas chlororaphis 30-84. Microbiology 158: 1745-1757. https://doi.org/10.1099/mic.0.059352-0
  104. Wang, D., Lee, S. H., Seeve, C., Yu, J. M., Pierson, L. S., 3rd and Pierson, E. A. 2013. Roles of the Gac-Rsm pathway in the regulation of phenazine biosynthesis in Pseudomonas chlororaphis 30-84. Microbiologyopen 2: 505-524. https://doi.org/10.1002/mbo3.90
  105. Wang, D., Dorosky, R. J., Han, C. S., Lo, C.-C., Dichosa, A. E. K., Chain, P. S., Yu, J. M., Pierson, L. S. and Pierson, E. A. 2015. Adaptation genomics of a small-colony variant in a Pseudomonas chlororaphis 30-84 biofilm. Appl. Environ. Microbiol. 81: 890-899. https://doi.org/10.1128/AEM.02617-14
  106. Weller, D. M. 1988. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu. Rev. Phytopathol. 26: 379-407. https://doi.org/10.1146/annurev.py.26.090188.002115
  107. Whistler, C. A. and Pierson, L. S., III. 2003. Repression of phenazine antibiotic production in Pseudomonas aureofaciens strain 30-84 by RpeA. J. Bacteriol. 185: 3718-3725. https://doi.org/10.1128/JB.185.13.3718-3725.2003
  108. Woo, S. L., Ruocco, M., Vinale, F., Nigro, M., Marra, R., Lombardi, N., Pascale, A., Lanzuise, S., Manganiello, G. and Lorito, M. 2014. Trichoderma-based products and their widespread use in agriculture. Open Mycol. J. 8: 71-126. https://doi.org/10.2174/1874437001408010071
  109. Yamazaki, A., Li, J., Zeng, Q., Khokhani, D., Hutchins, W. C., Yost, A. C., Biddle, E., Toone, E. J., Chen, X. and Yang, C.-H. 2012. Derivatives of plant phenolic compound affect the type III secretion system of Pseudomonas aeruginosa via a GacS-GacA two-component signal transduction system. Antimicrob. Agents Chemother. 56: 36-43. https://doi.org/10.1128/AAC.00732-11
  110. Yoo, S. J. and Sang, M. K. 2017. Induced systemic tolerance to multiple stresses including biotic and abiotic factors by rhizobacteria. Res. Plant Dis. 23: 99-113. (In Korean) https://doi.org/10.5423/RPD.2017.23.2.99
  111. Zdor, R. E. 2015. Bacterial cyanogenesis: impact on biotic interactions. J. Appl. Microbiol. 118: 267-274. https://doi.org/10.1111/jam.12697
  112. Zdor, R. E. and Anderson, A. J. 1992. Influence of root colonizing bacteria on the defense responses of bean. Plant Soil 140: 99-107. https://doi.org/10.1007/BF00012811