DOI QR코드

DOI QR Code

Synthesis of gold nanoparticles using Coffea Arabica fruit extract

  • Bogireddy, Naveen Kumar Reddy (CIICAp, UAEM) ;
  • Gomez, L. Martinez (Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Fisicas) ;
  • Osorio-Roman, I. (Facultad de Quimica, Pontificia Universidad Catolica de Chile) ;
  • Agarwal, V. (CIICAp, UAEM)
  • Received : 2017.01.15
  • Accepted : 2017.08.01
  • Published : 2017.09.25

Abstract

We report a simple eco-friendly process for the synthesis of gold nanoparticles (AuNPs) using aqueous extract from Coffea Arabica fruit. The formation of AuNPs was confirmed using absorption spectroscopy and scanning electron microscopy images. FT-IR analysis demonstrates the major functional groups present in Coffee Arabica fruit extract before and after synthesizing AuNPs. The Face Center Cubic (FCC) polycrystalline nature of these particles was identified by X-Ray diffraction (XRD) analysis. Taking into account the contribution of the biomass surrounding the AuNPs, dynamic light scattering (DLS) results revealed an average particle size of ~59 nm.

Keywords

References

  1. Azim, A., Davood, Z., Ali, F., Mohammad, R.M., Dariush, N., Tangestaninejad, S., Moghadam, M. and Bararpour, N. (2009), "Biomimetic synthesis of gelatin polypeptide-assisted noble-metal nanoparticles and their interaction study", Am. J. Appl. Sci., 6(1), 691-695. https://doi.org/10.3844/ajassp.2009.691.695
  2. Daniel, M.C. and Astruc, D. (2004), "Gold nanoparticles: Assembly, supramolecular chemistry, quantumsize-related properties, and applications toward biology, catalysis, and nanotechnology", Chem. Rev., 104(1), 293-346. https://doi.org/10.1021/cr030698+
  3. Fenger, R., Fertitta, E., Kirmse, H., Thunemann, A.F. and Rademann, K. (2012), "Size dependent catalysis with CTAB-stabilized gold nanoparticles", Phys. Chem. Chem. Phys., 14(26), 9343-9349. https://doi.org/10.1039/c2cp40792b
  4. Francyelle, M.O., Lucas, R.B.A.N., Claudia, M.S.C., Mario, R.M. and Monique, G.A.S. (2016), "Aqueousphase catalytic chemical reduction of p-nitrophenol employing soluble gold nanoparticles with different shapes", Catalysts, 6(12), 215, DOI: 10.3390/catal6120215
  5. Ghoreishi, S.M., Behpour, M. and Khayatkashani, M. (2011), "Green synthesis of silver and gold nanoparticles using rosa damascena and its primary application in electrochemistry", Physica E, 44(1), 97-104. https://doi.org/10.1016/j.physe.2011.07.008
  6. Guzman, M.G., Dille, J. and Godet, S. (2008), "Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity", Int. J. Chem. Biomol. Eng., 2(3), 91-98.
  7. Hu, M., Chen, J., Li, Z.Y., Au, L., Hartland, G.V., Li, X., Marquez, M. and Xia, Y. (2006), "Gold nanostructures: engineering their plasmonic properties for biomedical applications", Chem. Soc. Rev., 35(11), 1084-1094. https://doi.org/10.1039/b517615h
  8. Huang, G.S., Chen, Y.S. and Yeh, H.W. (2006), "Measuring the flexibility of immunoglobulin by gold nanoparticles", Nano Lett., 6(11), 2467-2471. https://doi.org/10.1021/nl061598x
  9. Maruyama, T., Fujimoto, Y. and Maekawa, T. (2015), "Synthesis of gold nanoparticles using various amino acids", J. Colloid Interf. Sci., 447, 254-257. https://doi.org/10.1016/j.jcis.2014.12.046
  10. Nadagouda, M.N. and Varma, R.S. (2008), "Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract", Green Chem., 10(8), 859-862. https://doi.org/10.1039/b804703k
  11. Pastoriza-Santos, I. and Liz-Marzan, L.M. (2002), "Synthesis of Silver nanoprisms in DMF", Nano Lett., 2(8), 903-905. https://doi.org/10.1021/nl025638i
  12. Peng, G., Tisch, U., Adams, O., Hakim, M., Shehada, N., Broza, Y.Y., Billan, S., Abdah-Bortnyak, R., Kuten, A. and Haick, H. (2009), "Diagnosing lung cancer in exhaled breath using gold nanoparticles", Nat. Nanotechnol., 4(10), 669-673. https://doi.org/10.1038/nnano.2009.235
  13. Philip, D. (2009), "Honey mediated green synthesis of gold nanoparticles", Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 73(4), 650-653. https://doi.org/10.1016/j.saa.2009.03.007
  14. Radha, N. and Mostafa, A.E. (2005), "Catalysis with transition metal nanoparticles in colloidal solution: Nanoparticle shape dependence and stability", J. Phys. Chem. B, 109, 12663-12676. https://doi.org/10.1021/jp051066p
  15. Shankar, S.S., Rai, A., Ahmad, A. and Sastry, M. (2005), "Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings", Chem. Mater., 17(3), 566-572. https://doi.org/10.1021/cm048292g
  16. Singh, V., Khullar, P., Dave, P.N., Kaur, G. and Bakshi, M.S. (2013), "Ecofriendly route to synthesize nanomaterials for biomedical applications; bioactive polymers on the shape control effects of nanomaterials under different reaction conditions", ACS Sust. Chem. Eng., 1(11), 1417-1431. https://doi.org/10.1021/sc400159x
  17. Tapan, K.S. and Andrey, L.R. (2009), "Nonspherical noble metal nanoparticles: Colloid chemical synthesis and morphology control", Adv. Mater., 22(16), 1781-1804. https://doi.org/10.1002/adma.200901271
  18. Vivek, D., Soumya, L., Bharadwaj, S., Shilpa, C., Deepika, B. and Sreedhar, B. (2016), "Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity", Mat. Sci. Eng. C, 58, 36-43. https://doi.org/10.1016/j.msec.2015.08.018

Cited by

  1. Bimetallic M-Cu (M = Ag, Au, Ni) Nanoparticles Supported on γAl2O3-CeO2 Synthesized by a Redox Method Applied in Wet Oxidation of Phenol in Aqueous Solution and Petroleum Refinery Wastewater vol.11, pp.10, 2017, https://doi.org/10.3390/nano11102570
  2. Andean Capuli Fruit Derived Anisotropic Gold Nanoparticles with Antioxidant and Photocatalytic Activity vol.11, pp.4, 2017, https://doi.org/10.1007/s12668-021-00911-9