DOI QR코드

DOI QR Code

Efficacy of Tissue Culture in Virus Elimination from Caprifig and Female Fig Varieties (Ficus carica L.)

  • Bayoudh, Chokri (Regional Research Centre on Horticulture and Organic Agriculture (CRRHAB)) ;
  • Elair, Manel (National Institute of Agronomy) ;
  • Labidi, Rahma (U.R. Agrobiodiversity, High Agronomic Institute) ;
  • Majdoub, Afifa (Regional Research Centre on Horticulture and Organic Agriculture (CRRHAB)) ;
  • Mahfoudhi, Naima (Laboratory of Plant Protection, National Agronomic Research Institute (INRAT)) ;
  • Mars, Messaoud (Regional Research Centre on Horticulture and Organic Agriculture (CRRHAB))
  • Received : 2016.10.02
  • Accepted : 2017.01.25
  • Published : 2017.06.01

Abstract

Fig mosaic disease (FMD) is a viral disease that spreads in all Tunisian fig (Ficus carica L.) orchards. RT-PCR technique was applied to leaf samples of 29 fig accessions of 15 fig varieties from the fig germplasm collection of High Agronomic Institute (I.S.A) of ChattMariem, to detect viruses associated to FMD. Analysis results show that 65.5% of the accessions (19/29) and 80.0% (12/15) of the fig varieties are infected by FMD-associated viruses. From all fig accessions, 41.4% of them are with single infection (one virus) and 24.1% are with multi-infections (2 virus and more). Viruses infecting fig leaf samples are Fig mosaic virus (FMV) (20.7%), Fig milde-mottle-associated virus (FMMaV) (17.25%), Fig fleck associated virus (FFkaV) (3.45%), and Fig cryptic virus (FCV) (55.17%). A reliable protocol for FCV and FMMaV elimination from 4 local fig varieties Zidi (ZDI), Soltani (SNI), Bither Abiadh (BA), and Assafri (ASF) via in vitro culture of 3 meristem sizes was established and optimized. With this protocol, global sanitation rates of 79.46%, 65.55%, 68.75%, and 70.83% respectively for ZDI, SNI, BA, and ASF are achieved. For all sanitized varieties, the effectiveness of meristem culture for the elimination of FCV and FMMaV viruses was related to meristem size. Meristem size 0.5 mm provides the highest sanitation rates ranging from 70% to 90%.

Keywords

References

  1. Aldhebiani, A. Y., Elbeshehy, E. K. F., Baeshen, A. A. and Elbeaino, T. 2015. Four viruses infecting figs in Western Saudi Arabia. Phytopathol. Mediterr. 54:497-503.
  2. Alhudaib, K. 2012. Incidence of Fig leaf mottle-associated virus and Fig mosaic virus in eastern province of Saudi Arabia. Int. J. Virol. 8:128-132. https://doi.org/10.3923/ijv.2012.128.132
  3. Alkowni, R., Chiumenti, M., Minafra, A. and Martelli, G. P. 2015. A survey for fig-infecting viruses in Palestine. J. Plant Pathol. 97:383-386.
  4. Appiano, A., Conti, M. and Zini, N. 1995. Cytopathological study of the double-membrane bodies occurring in fig plants affected by fig mosaic disease. Acta Hortic. 386:585-592.
  5. Bayoudh, C., Labidi, R., Majdoub, A. and Mars, M. 2014. Fig mosaic disease (FMD) incidence in some regions of Center-East of Tunisia. Res. Crops 15:893-901. https://doi.org/10.5958/2348-7542.2014.01427.2
  6. Bayoudh, C., Labidi, R., Majdoub, A. and Mars, M. 2015. In vitro propagation of caprifig and female fig varieties (Ficus carica L.) from shoot-tips. J. Agric. Sci. Tech. 17:1597-1608.
  7. Caglayan, K., Medina, V., Gazel, M., Serce, U. C., Serrano, L., Achon, A., Soylu, S., Caliskan, O. and Gumus, M. 2009. Putative agents of fig mosaic disease in Turkey. Turk. J. Agric. For. 33:469-476.
  8. Chalak, L., Elbeaino, T., Elbitar, A., Fattal, T. and Choueiri, E. 2015. Removal of viruses from Lebanese fig varieties using tissue culture and thermotherapy. Phytopathol. Mediterr. 54:531-535.
  9. Chiumenti, M., Campanale, A., Bottalico, G., Minafra, A., De Stradis, A., Savino, V. and Martelli, G. P. 2013. Sanitation trials for the production of virus-free fig stocks. J. Plant Pathol. 95:655-658.
  10. Comlekcioglu, S., Kuden, A. B., Aka Kacar, Y. and Kamberoglu, M. A. 2007. Meristem culture of two fig cultivars in Turkey. Fruits 62:125-131. https://doi.org/10.1051/fruits:2007006
  11. Condit, I. J. and Horne, W. T. 1933. A mosaic of the fig in California. Phytopathology 23:887-896.
  12. Danesh-Amuz, S., Rakhshandehroo, F., Rezaee, S. and Elbeaino, T. 2013. Occurrence of Fig leaf mottle-associated virus 2 in Iran. J. Plant Pathol. 95:659-668.
  13. Elair, M., Mahfoudhi, N., Bayoudh, C., Selmi, I., Mars, M. and Dhouibi, M. H. 2014. Sanitary selection of virus-tested fig (Ficus carica) cultivars in Tunisia. Tunis. J. Plant Prot. 9:100-109.
  14. Elair, M., Mahfoudhi, N., Digiaro, M., Dhouibi, M. H. and Elbeaino, T. 2015. Incidence and distribution of viruses in Tunisian fig orchards. J. Plant Pathol. 97:327-331.
  15. Elair, M., Mahfoudhi, N., Elbeaino, T., Dhouibi, M. H. and Digiaro, M. 2012. Occurrence of Fig mosaic virus in Tunisian fig orchards. J. Plant Pathol. 94:85-105.
  16. Elair, M., Mahfoudhi, N., Elbeaino, T., Dhouibi, M. H. and Digiaro, M. 2013. Presence of Fig mild mottle-associated virus and Fig latent virus 1 in Tunisia. J. Plant Pathol. 95:69-77.
  17. Elbeaino, T., Abou Kubaa, R., Digiaro, M., Minafra, A. and Martelli, G. P. 2011a. The complete nucleotide sequence and genome organization of Fig cryptic virus, a novel bipartite dsRNA virus infecting fig, widely distributed in the Mediterranean basin. Virus Genes 42:415-421. https://doi.org/10.1007/s11262-011-0581-0
  18. Elbeaino, T., Abou Kubaa, R., Ismaeil, F., Mando, J. and Digiaro, M. 2012. Viruses and Hop stunt viroid of fig trees in Syria. J. Plant Pathol. 94:687-691.
  19. Elbeaino, T., Choueiri, E., Hobeika, C. and Digiaro, M. 2007. Presence of Fig leaf mottle-associated virus 1 and 2 in Lebanese fig orchards. J. Plant Pathol. 89:409-411.
  20. Elbeaino, T., Digiaro, M., Alabdullah, A., De Stradis, A., Minafra, A., Mielke, N., Castellano, M. A. and Martelli, G. P. 2009a. A multipartite single-stranded negative-sense RNA virus is the putative agent of fig mosaic disease. J. Gen. Virol. 90:1281-1288. https://doi.org/10.1099/vir.0.008649-0
  21. Elbeaino, T., Digiaro, M., De Stradis, A. and Martelli, G. P. 2006. Partial characterization of a closterovirus associated with a chlorotic mottling of fig. J. Plant Pathol. 88:187-192.
  22. Elbeaino, T., Digiaro, M., Heinoun, K., De Stradis, A. and Martelli, G. P. 2010. Fig mild mottle-associated virus, a novel closterovirus infecting fig. J. Plant Pathol. 92:165-172.
  23. Elbeaino, T., Digiaro, M. and Martelli, G. P. 2011b. Complete sequence of Fig fleck-associated virus, a novel member of the family Tymoviridae. Virus Res. 161:198-202. https://doi.org/10.1016/j.virusres.2011.07.022
  24. Elbeaino, T., Nahdi, S., Digiaro, M., Alabdullah, A. and Martelli, G. P. 2009b. Detection of flmav-1 and flmav-2 in the Mediterranean region and study on sequence variation of the hsp70 gene. J. Plant Pathol. 91:425-431.
  25. Elci, E., Cigdem, U. S. and Caglayan, K. 2013. Phylogenetic analysis of partial sequences from Fig mosaic virus isolates in Turkey. Phytoparasitica 41:263-270. https://doi.org/10.1007/s12600-013-0286-0
  26. Faccioli, G. and Marani, F. 1998. Virus elimination by meristem tip culture and tip micrografting. In: Plant virus disease control, eds. by A. Hadidi., R. K. Khetarpal and H. Koganezawa, pp. 346-380. APS Press, St. Paul, MN, USA.
  27. [FAOSTAT] Food and Agriculture Organization of the United Nations, Statistics Division (2015 onwards). Crops: visualize data. URL http://faostat3.fao.org/browse/Q/QC/E [25 November 2015].
  28. Flock, R. A. and Wallace, J. M. 1955. Transmission of fig mosaic by the eriophyid mite Aceria ficus. Phytopathology 45:52-54.
  29. Foissac, X., Svanella-Dumas, L., Gentit, P., Dulucq, M. J. and Candresse, T. 2001. Polyvalent detection of fruit tree Tricho, Capillo and Foveaviruses by nested RT-PCR using degenerated and inosine containing primers (PDO RT-PCR). Acta Hortic. 550:37-43.
  30. Gattoni, G., Minafra, A., Castellano, M. A., De Stradis, A., Boscia, D., Elbeaino, T., Digiaro, M. and Martelli, G. P. 2009. Some properties of Fig latent virus 1, a new member of the family Flexiviridae. J. Plant Pathol. 91:555-564.
  31. Ishikawa, K., Maejima, K., Nagashima, S., Sawamura, N., Takinami, Y., Komatsu, K., Hashimoto, M., Yamaji, Y., Yamamoto, J. and Namba, S. 2012. First report of fig mosaic virus infecting common fig (Ficus carica) in Japan. J. Gen. Plant Pathol. 78:136-139. https://doi.org/10.1007/s10327-012-0359-9
  32. Laney, A. G., Hassan, M. and Tzanetakis, I. E. 2012. An integrated badnavirus is prevalent in fig germplasm. Phytopathology 102:1182-1189. https://doi.org/10.1094/PHYTO-12-11-0351
  33. Mars, M. 2003. Fig (Ficus carica L.) genetic resources and breeding. Acta Hortic. 605:19-27.
  34. Mars, M., Chatti, K., Saddoud, O., Salhi-Hannachi, A., Trifi, M. and Marrakchi, M. 2008. Fig cultivation and genetic resources in Tunisia, an overview. Acta Hortic. 798:27-32.
  35. Milosevic, S., Cingel, A., Jevremovic, S., Stankovic, I., Bulajic, A., Krstic, B. and Subotic, A. 2012. Virus elimination from ornamental plants using in vitro culture techniques. Pestic. Phytomed. 27:203-211. https://doi.org/10.2298/PIF1203203M
  36. Nahdi, S. and Aljane, F. 2014. Identification des virus associes a la maladie de mosaïque (FMD) du figuier (Ficus carica L.) en Tunisie. Revue des Regions Arides 34:35-45.
  37. Nahdi, S., Elbeaino, T., Digiaro, M. and Martelli, G. P. 2006. First record of Fig leaf mottle-associated virus 1 in Tunisia. J. Plant Pathol. 88:S70.
  38. Nam, M., Lee, Y. H., Park, C. Y., Lee, M. A., Bae, Y. S., Lim, S., Lee, J. H., Moon, J. S. and Lee, S. H. 2015. Development of multiplex RT-PCR for simultaneous detection of garlic viruses and the incidence of garlic viral disease in garlic genetic resources. Plant Pathol. J. 31:90-96. https://doi.org/10.5423/PPJ.NT.10.2014.0114
  39. Saddoud, O., Chatti, K., Salhi-Hannachi, A., Mars, M., Marrakchi, M., Achon, M. A., Medina, V. P. and Trifi, M. 2006. The fig mosaic disease (FMD) in Tunisian fig (Ficus carica L.): symptomatology and cytopathological studies. Biologia Tunisie 4:18-21.
  40. Tzanetakis, I. E., Laney, A. G., Keller, K. E. and Martin, R. R. 2010. New viruses found in fig exhibiting mosaic symptoms. Julius-Kuhn-Archiv 427:79-82.
  41. Tzanetakis, I. E. and Martin, R. R. 2008. A new method for extraction of double-stranded RNA from plants. J. Virol. Methods 149:167-170. https://doi.org/10.1016/j.jviromet.2008.01.014
  42. Walia, J. J., Salem, N. M. and Falk, B. W. 2009. Partial sequence and survey analysis identify a multipartite, negativesense RNA virus associated with fig mosaic. Plant Dis. 93:4-10. https://doi.org/10.1094/PDIS-93-1-0004
  43. Walia, J. J., Willemsen, A., Elci, E., Caglayan, K., Falk, B. W. and Rubio, L. 2014. Genetic variation and possible mechanisms driving the evolution of worldwide Fig mosaic virus isolates. Phytopathology 104:108-114. https://doi.org/10.1094/PHYTO-05-13-0145-R
  44. Yakoubi, S., Elleuch, A., Besaies, N., Marrakchi, M. and Fakhfakh, H. 2007. First report of Hop stunt viroid and Citrus exocortis viroid on fig with symptoms of fig mosaic disease. J. Phytopathol. 155:125-128. https://doi.org/10.1111/j.1439-0434.2007.01205.x
  45. Youssef, S. A., Al-Dhaher, M. M. A. and Shalaby, A. A. 2009. Elimination of Grapevine fanleaf virus (GFLV) and Grapevine leaf roll-associated virus-1 (GLRaV-1) from infected grapevine plants using meristem tip culture. Int. J. Virol. 5:89-99. https://doi.org/10.3923/ijv.2009.89.99

Cited by

  1. Micropropagation of virus-free plants of Saudi fig (Ficus carica L.) and their identification through enzyme-linked immunosorbent assay methods pp.1475-2689, 2018, https://doi.org/10.1007/s11627-018-9933-y
  2. Defence mechanisms of Ficus: pyramiding strategies to cope with pests and pathogens vol.249, pp.3, 2019, https://doi.org/10.1007/s00425-019-03098-2