References
- Ahmed, M. and Hashmi, M.S.J. (1998), "Finite-element analysis of bulge forming applying pressure and inplane compressive load", Mater. Process. Technol., 77(1), 95-102. https://doi.org/10.1016/S0924-0136(97)00404-4
- Alizada, A.N. and Sofiyev, A.H. (2011a), "Modified Young's moduli of nano-materials taking into account the scale effects and vacancies", Meccanica, 46(5), 915-920. https://doi.org/10.1007/s11012-010-9349-1
- Alizada, A.N. and Sofiyev, A.H. (2011b), "On the mechanics of deformation and stability of the beam with a nanocoating", Reinf. Plastic. Compos., 30(18), 1583-1595. https://doi.org/10.1177/0731684411428382
- Alizada, A.N., Sofiyev, A.H. and Kuruoglu, N. (2012), "Stress analysis of a substrate coated by nanomaterials with vacancies subjected to uniform extension load", Acta. Mech., 223(7), 1371-1383. https://doi.org/10.1007/s00707-012-0649-5
- Altabey, W. (2017), "A study on thermo-mechanical Behavior of MCD through bulge test analysis", Adv. Computat. Des., Int. J., 2(2), 107-119.
- Brandon, J.F., Lecoanet, H. and Oytana, C. (1979), "A new formulation for the bulging of viscous sheet metals", Int. J. Mech. Sci., 21(7), 379-386. https://doi.org/10.1016/0020-7403(79)90058-4
- Chater, E. and Neale, K.W. (1983), "Finite plastic deformation of a circular membrane under hydrostatic pressure - I: Rate-independent behaviour", Mech. Sci., 25(4), 219-233. https://doi.org/10.1016/0020-7403(83)90026-7
- Ebrahimi, F. and Barati, M.R. (2016b-a), "Analytical solution for nonlocal buckling characteristics of higher-order inhomogeneous nanosize beams embedded in elastic medium", Adv. Nano Res., Int. J., 4(3), 229-249.
- Ebrahimi, F. and Barati, M.R. (2016a-b), "An exact solution for buckling analysis of embedded piezoelectro-magnetically actuated nanoscale beams", Adv. Nano Res., Int. J., 4(2), 65-84. https://doi.org/10.12989/anr.2016.4.2.065
- Ebrahimi, F. and Barati, M.R. (2016c), "Buckling analysis of nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in elastic medium", J. Brazil. Soc. Mech. Sci. Eng., 39(3), 937-952. DOI: 10.1007/s40430-016-0551-5
- Ebrahimi, F. and Barati, M.R. (2016d), "Dynamic modeling of a thermo-piezo-electrically actuated nanosize beam subjected to a magnetic field", J. Appl. Phys. A, 122(4), 451. https://doi.org/10.1007/s00339-016-0001-3
- Ebrahimi, F. and Barati, M.R. (2016e), "Electromechanical buckling behavior of smart piezoelectrically actuated higher-order size-dependent graded nanoscale beams in thermal environment", Int. J. Smart Nano Mater., 7(2), 69-90. https://doi.org/10.1080/19475411.2016.1191556
- Ebrahimi, F. and Barati, M.R. (2016f), "Small scale effects on hygro-thermo-mechanical vibration of temperature dependent nonhomogeneous nanoscale beams", J. Mech. Adv. Mater. Struct., 24(11), 924-936. DOI: http://dx.doi.org/10.1080/15376494.2016.1196795
- Ebrahimi, F. and Barati, M.R. (2016g), "Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment", J. Vib. Control, 1077546316646239. DOI: http://dx.doi.org/10.1177/1077546316646239
- Ebrahimi, F. and Barati, M.R. (2017), "Buckling analysis of smart size-dependent higher order magnetoelectro-thermo-elastic functionally graded nanosize beams", J. Mech., 33(1), 23-33. https://doi.org/10.1017/jmech.2016.46
- Ebrahimi, F. and Farzamand, N. (2016), "Thermo-mechanical vibration analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets based on a higher-order shear deformation beam theory", J. Mech. Adv. Mater. Struct., 24(10), 820-829. DOI: http://dx.doi.org/10.1080/15376494.2016.1196786
- Ebrahimi, F. and Salari, E. (2015a), "Effect of various thermal loadings on buckling and vibrational characteristics of nonlocal temperature-dependent FG nanobeams", J. Mech. Adv. Mater. Struct., 23(12), 1-58.
- Ebrahimi, F. and Salari, E. (2015b), "Size-dependent thermo-electrical buckling analysis of functionally graded piezoelectric nanobeams", J. Smart Mater. Struct., 24(12), 125007. https://doi.org/10.1088/0964-1726/24/12/125007
- Ebrahimi, F. and Shafiei, N. (2016), "Influence of initial shear stress on the vibration behavior of singlelayered graphene sheets embedded in an elastic medium based on Reddy's higher-order shear deformation plate theory", J. Mech. Adv. Mater. Struct., 24(9), 761-772. DOI: http://dx.doi.org/10.1080/15376494.2016.1196781
- Ebrahimi, F., Salari, E. and Hosseini, S.A.H. (2015), "Thermomechanical vibration behavior of FG nanobeams subjected to linear and non-linear temperature distributions", J. Thermal Stresses, 38(12), 1360-1386. https://doi.org/10.1080/01495739.2015.1073980
- Edwards, R.L., Coles, G. and Sharpe, W.N. (2004), "Comparison of tensile and bulge tests for thin-film silicon nitride", Soc. Experim. Mech., 44(1), 49-54. https://doi.org/10.1007/BF02427976
-
Gologranc, F. (1975), "Beitrag zur Ermittlung von Flie
$\ss$ kurven im kontinuierlichen hydraulischen Tiefungsversuch (Evaluation of the flow stress curve with the continuous hydraulic bulge test)", Dissertation; Institute for Metal Forming Technology, University of Stuttgart, Germany. - Grolleau, V., Gary, G. and Mohr, D. (2008), "Biaxial testing of sheet materials at high strain rates using viscoelastic bars", Experim. Mech., 48(3), 293-306. https://doi.org/10.1007/s11340-007-9073-5
- Hill, R. (1950), "A theory of plastic bulging of a metal diaphragm by lateral pressure", The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 41(322), 1133-1142. https://doi.org/10.1080/14786445008561154
- Hill, R. (1990), "Constitutive modelling of orthotropic plasticity in sheet metals", Mech. Phys. Solids., 38(3), 405-417. https://doi.org/10.1016/0022-5096(90)90006-P
- Huang, A.W., Lu, C.H., Wu, S.C., Chen, T.C., Vinci, R.P., Brown, W.L. and Lin, M.T. (2016), "Viscoelastic mechanical properties measurement of thin Al and Al-Mg films using bulge testing ", Thin Solid Films, 618, 2-7. DOI: 10.1016/j.tsf.2016.03.064
- Ilahi, M.F. and Paul, T.K. (1985), "Hydrostatic bulging of a circular soft brass diaphragm", Int. J. Mech. Sci. 27(5), 275-280. https://doi.org/10.1016/0020-7403(85)90017-7
- Ilahi, M.F., Parmar, A. and Mellor, P.B. (1981), "Hydrostatic bulging of a circular aluminum diaphragm", Mech. Sci., 23(4), 221-227.
- Itozaki, H. (1982), "Mechanical properties of composition modulated copper-palladium foils", Ph.D. Dissertation; Northwestern University, Evanston, IL, USA.
- Jung, B., Lee, H., Hwang, K. and Park, H. (2012), "Measurement of mechanical properties of thin films using a combination of the bulge test and nanoindentation", Transact. Kor. Soc. Mech. Engr. B, 36(2), 117-123.
- Jung, B., Lee, H., Hwang, K. and Park, H. (2013), "Observation of size effect and measurement of mechanical properties of Ti thin film by bulge test", Transact. Kor. Soc. Mech. Engr. B, 37(1), 19-25. https://doi.org/10.3795/KSME-B.2013.37.1.019
- Kular, G.S. and The, J.H.L. (1972), "The bulging of anisotropic aluminum sheets - A comparison of theory and experiments", Int. J. Mach. Tool Des. Res., 12(4), 281-296. https://doi.org/10.1016/0020-7357(72)90015-7
- Mellor, P.B. (1956), "Stretch forming under fluid pressure", Mech. Phys. Solid., 5(1), 41-56. https://doi.org/10.1016/0022-5096(56)90006-0
- Panknin, W. (1959), "Der hydraulische Tiefungsversuch und die Ermittlung von Fliesskurven (The hydraulic bulge test and the determination of the flow stress curves)", Dissertation; Institute for Metal Forming Technology, University of Stuttgart, Germany.
- Small, M.K. and Nix, W.D. (1992), "Analysis of the accuracy of the bulge test in determining the mechanical properties of thin-films", Mater. Res., 7(6), 1553-1563. https://doi.org/10.1557/JMR.1992.1553
- Storakers, B. (1966), "Finite plastic deformation of a circular membrane under hydrostatic pressure", Mech. Sci., 8(10), 619-628. https://doi.org/10.1016/0020-7403(66)90040-3
- Suttner, S. and Merklein, M. (2016), "Experimental and numerical investigation of a strain rate controlled hydraulic bulge test of sheet metal", Mater. Process. Technol., 235, 121-133. https://doi.org/10.1016/j.jmatprotec.2016.04.022
- Tabata, O., Kawahata, K., Sugiyama, S. and Igarashi, I. (1989), "Mechanical property measurements of thin films using load-deflection of composite rectangular membranes", J. Sensors Actuat., 20(1-2), 135-141. https://doi.org/10.1016/0250-6874(89)87111-2
- Tang, S.C. (1982), "Large strain analysis of an inflating membrane", Comput. Struct., 15(1), 71-78. https://doi.org/10.1016/0045-7949(82)90034-7
- Wan, K., Guo, S. and Dillard, D.A. (2003), "A theoretical and numerical study of a thin clamped circular film under an external load in the presence of a tensile residual stress", Thin Solid Films, 425(1), 150-162. https://doi.org/10.1016/S0040-6090(02)01103-3
- Vlassak, J.J. (1994), "New experimental techniques and analysis methods for the study of mechanical properties of materials in small volumes", Ph.D. Dissertation; Stanford University, Stanford, CA, USA.
- Vlassak, J.J. and Nix, W.D. (1992), "A new bulge test technique for the determination of Young's modulus and Poisson's ratio of thin films", J. Mater. Res., 7(12), 3242-3249. https://doi.org/10.1557/JMR.1992.3242
- Wang, N.M. and Shammamy, M.R. (1969), "On the plastic bulging of a circular diaphragm by hydrostatic pressure", Mech. Phys. Solids, 17(1), 43-64. https://doi.org/10.1016/0022-5096(69)90012-X
- Xiang, Y., Chen, X. and Vlassak, J.J. (2005), "Plane-strain bulge test for thin films", Mater. Res. Soc., 20(9), 2360-2370. https://doi.org/10.1557/jmr.2005.0313
- Yang, L., Long, S., Ma, Z. and Wang, Z. (2014), "Accuracy analysis of plane-strain bulge test for determining mechanical properties of thin films", Transact. Nonferrous Metals Soc. China, 24(10), 3265-3273. https://doi.org/10.1016/S1003-6326(14)63466-X
- Zeghloul, A., Mesrar, R. and Ferron, G. (1991), "Influence of material parameters on the hydrostatic bulging of a circular diaphragm", Mech. Sci., 33(3), 229-243. https://doi.org/10.1016/0020-7403(91)90049-9
- Zhang, J., Sun, Y., Li, D., Cao, Y., Wang, Z., Ma, J. and Zhao, G. (2015), "Modeling the mechanics of graphene-based polymer composite film measured by the bulge test", Phys. D: Appl. Phys., 48(42), 425302. https://doi.org/10.1088/0022-3727/48/42/425302
Cited by
- Fatigue damage identification for composite pipeline systems using electrical capacitance sensors vol.27, pp.8, 2018, https://doi.org/10.1088/1361-665X/aacc99
- Deep Learning-Based Damage, Load and Support Identification for a Composite Pipeline by Extracting Modal Macro Strains from Dynamic Excitations vol.8, pp.12, 2017, https://doi.org/10.3390/app8122564
- A Comparison of Three Different Methods for the Identification of Hysterically Degrading Structures Using BWBN Model vol.4, pp.None, 2017, https://doi.org/10.3389/fbuil.2018.00080
- Accurate estimation of DLC thin film hardness using genetic programming vol.111, pp.6, 2020, https://doi.org/10.3139/146.111911