DOI QR코드

DOI QR Code

마이크로웨이브 가열에 의한 황비철석의 열분해와 습식-자력선별에 의한 비소 제거 효과

Thermal Decomposition of Arsenopyrite by Microwave Heating and the Effect of Removal Arsenic with Wet-magnetic separation

  • 온현성 (조선대학교 에너지.자원공학과) ;
  • 김현수 (조선대학교 에너지.자원공학과) ;
  • 명은지 (조선대학교 에너지.자원공학과) ;
  • 임대학 (조선대학교 에너지.자원공학과) ;
  • 박천영 (조선대학교 에너지.자원공학과)
  • On, Hyun-Sung (Dept. of Energy and Resource Engineering, Chosun University) ;
  • Kim, Hyun-Soo (Dept. of Energy and Resource Engineering, Chosun University) ;
  • Myung, Eun-Ji (Dept. of Energy and Resource Engineering, Chosun University) ;
  • Lim, Dae-Hack (Dept. of Energy and Resource Engineering, Chosun University) ;
  • Park, Cheon-Young (Dept. of Energy and Resource Engineering, Chosun University)
  • 투고 : 2017.08.17
  • 심사 : 2017.09.26
  • 발행 : 2017.09.30

초록

광액시료와 비-자성광액시료에 포함된 황비철석을 자류철석으로 상변환 시키기 위하여 그리고 비소 함량을 2,000 mg/kg 이하로 제거하기 위하여 마이크로웨이브 장치를 다양한 시간으로 가열하였고, 습식-자력선별하였다. 마이크로웨이브 가열시간이 증가함에 따라 황비철석 표면의 가장자리부터 자류철석으로 상변환이 일어났고, 열점 현상에 의하여 자류철석 내부에 용융공극과 마이크로-크랙들이 형성되었다. 마이크로웨이브 가열을 10분간 수행한 광액시료(비소 함량 : 14,732.66 mg/kg)와 비-자성 광액시료(비소 함량 : 19,970.13 mg/kg)를 습식-자력선별하여 자성광물로 분리시킨 결과, 10분 가열한 자성광물 시료에서 만 비소 함량이 2,000 mg/kg 이하로 나타났다. 따라서 향후 비소 페널티부과 대상인 복합황화광물을 마이크로웨이브 가열과 습식-자력선별을 효과적으로 활용하면, 비소 함량을 페널티 부과대상 이하의 광석광물을 얻을 수 있을 것으로 기대한다.

In order to transform arsenopyrite into pyrrhotite and to decrease As content by less than 2,000 mg/kg, pulp sample and non-magnetic pulp sample were heated in a microwave oven at different heating times and were separated through wet-magnetic separation. As the microwave heating time increased, the phase of pyrrhotite was extended to become arsenopyrite entirely. The melting pores and micro-cracks occurred on the pyrrhotite due to hot spot phenomenon with microwave heating. The heated raw pulp sample (As content : 19,970.13 mg/kg) and non-magnetic pulp sample (As content : 19,970.13 mg/kg) which were heated in a microwave oven for 10 minutes were separated through wet-magnetic separation and magnetic fraction containing less than 2,000 mg/kg of As content was recovered only from the heated sample of magnetic separation. It was discovered that for the sulfide complex ore with As penalty imposed on, if microwave heating and wet-magnetic separation are effectively utilized, magnetic fraction. We expect to be able to obtain ore minerals with an arsenic content below the penalty charge.

키워드

참고문헌

  1. Alp, I., Celep, O., and Deveci, H. (2010) Alkaline sulfide pretreatment of an antimonial refractory Au-Ag ore for improved cyanidation, JOM, 62, 41-44.
  2. Aylmore, M.G. and Klerk, L.W. (2013) Conditions and design considerations for maximising recoverable gold in roasting of refractory gold ores, World Gold Conference/Brisbane, QLD, 26-29 September 2013, 14p.
  3. Balcerzak, M. (2002) Sample digestion methods for the determination of traces of precious metals by spectrometric techniques, Analytical Sciences, 18, 737-750. https://doi.org/10.2116/analsci.18.737
  4. Bluhm, Delwyn D., Fanslow, Glenn., and Nelson, Stuart O. (1986) Enhanced Magnetic Separation of Pyrite from Coal Afer Microwave Heating, IEEE transactions on magnetics, 22, 1887-1890. https://doi.org/10.1109/TMAG.1986.1064686
  5. Boyabat, N., Ozer, A.K., Bayrakceken, S., and Gulaboglu, M.S. (2003) Thermal decomposition of pyrite in the nitrogen atmosphere, Fuel Processing Technology, 85, 179-188.
  6. Butcher, D.A. and Rowson, N.A. (1995) Microwave pretreatment of coal prior to magnetic separation, Magnetic and Electrical Separation, 6, 87-97. https://doi.org/10.1155/1995/90127
  7. De Michelis, I., Olivieri, A., Ubaldini, S., Ferella, F., Beolchini, F., and Veglio, F. (2013) Roasting and chlorine leaching of gold-bearing refractory concentrate: experimental and process analysis, International Journal of Mining Science and Technology, 23, 709-715. https://doi.org/10.1016/j.ijmst.2013.08.015
  8. Dunn, J.G. and Chamberlain, A.C. (1997) The recovery of gold from refractory arsenopyrite concentrate by pyrolysis-oxidation, Minerals Engineering, 10, 919-928. https://doi.org/10.1016/S0892-6875(97)00074-5
  9. Fornasiero, D., Fullston, D., Li, C., and Ralston, J. (2001) Separation of enargite and tennantite from non-arsenic copper sulfide minerals by selective oxidation or dissolution, Internaltional Journal of Mineral processing, 61, 109-119. https://doi.org/10.1016/S0301-7516(00)00029-6
  10. Fullston, D., Fornasiero, D., and Ralston, J. (1999) Oxidation of synthetic and natural samples of enargite and tennantite: 1 dissolution and zeta potential study, Langmuir, 15, 4524-4529. https://doi.org/10.1021/la981526o
  11. Haque, K. E. (1999) Microwave energy for mineral treatment processes a brief review, International Journal of Mineral Processing, 57, 1-24. https://doi.org/10.1016/S0301-7516(99)00009-5
  12. Kim, D. K. (2014) Secondary Damage from an Environmental Pollution Incident and the Restoration Process : Focusing on A Village Near Janghang Smelter, Journal of Social Science, 25(3), 29, 267-295.
  13. Lane, D.L., Cook, N.J., Grano, S.R., and Ehring, K. (2016) Selective leaching of penalty elements from copper concentrates: a review, Minerals Engineering, 98, 110-121. https://doi.org/10.1016/j.mineng.2016.08.006
  14. Liu, Z., Lei, H.Y., Bai, T., Wang, W.Z., Chen, K., Chen, J.J., and Hu, Q.W. (2015) Microwave-assisted arsenic removal and the magnetic effect of typical arsenopyrite-bearing mine tailing, Chemical Engineering Journal, 272, 1-11. https://doi.org/10.1016/j.cej.2015.02.084
  15. Marcoux, E., Belkabir, A., Gibson, H.L., Lentz, D., and Ruffet, G. (2008) Draa Sfar, Morocco: a visean(331 Ma) pyrrhotite-rich, polymetallic volcanogenic massive sulphide deposit in a Hercynian sediment-dominant terrane, Ore Geology Reviews, 33, 307-328. https://doi.org/10.1016/j.oregeorev.2007.03.004
  16. Mikhail, S.A. and Turcotte, A.M. (1992) Thermal decomposition of arsenopyrite in the presence of calcium oxide, Thermochimica Acta, 212, 27-37. https://doi.org/10.1016/0040-6031(92)80217-K
  17. Plackowski, C., Nguyen, A.V., and Bruckard, W.J. (2012) A critical review of surface properties and selective flotation of enargite in sulphide systems, Minerals Engineering, 30, 1-11. https://doi.org/10.1016/j.mineng.2012.01.014
  18. Pracejus, B. (2008) The ore minerals under the microscopy; an optical guide, Elsevier, 875p.
  19. Senior, G.D., Guy, P.J., and bruckard, W.J. (2006) The selective flotation of enargite from other copper minerals-a single mineral study in relation to beneficiation of the Tampakan deposit in the Philippines, International Journal of Mineral processing, 81, 15-26. https://doi.org/10.1016/j.minpro.2006.06.001
  20. Smith, L.K. and Bruckard, W.J. (2007) The separation of arsenic from copper in a Northparkes copper-gold ore using controlled-potential flotation, International Journal of Mineral processing, 84, 15-24. https://doi.org/10.1016/j.minpro.2007.05.002
  21. Stafilov, T. (2000) Determination of trace elements in minerals by electrothermal atomic absorption spectrometry, Spectrochemica Acta Part B, 55, 893-906. https://doi.org/10.1016/S0584-8547(00)00227-5
  22. Su, X.J., Ma, S.J., He, C.L., Liang, Y.S., and Chen, Y.Q. (2014) Direct microwave roasting of arsenic-bearing pyritic concentrates, Journal of Microwave Power and Electromagnetic Energy, 48, 81-88. https://doi.org/10.1080/08327823.2014.11689873
  23. Thomas, K.G. and Cole, A.P. (2005) Roasting developments-especially oxygenated roasting, In; Mike, D.(eds), Developments in Mineral processing, 15, 403-432.
  24. Tongamp, W., Takasaki, Y., and Shibayama, A. (2009) Arsenic removal from copper ores and concentrates through alkaline leaching in NaHS media, Hydrometallurgy, 213-218.
  25. Twyman, R.M. (2005) Sample dissolution for elemental analysis/Wet digestion, Analytical Chemistry, 360, 146-152.
  26. Uslu, T., Atalay, U., and Arol, A.I. (2003) Effect of microwave heating on magnetic separation of pyrite, Colloids and Surfaces, 225, 161-167. https://doi.org/10.1016/S0927-7757(03)00362-5
  27. Walker, S.R., Jamiseon, H.E., Lanzirotti, A., Hall, G.E.M., and Peterson, R.C. (2015) The effect of ore roasting on arsenic oxidation state and solid phase speciation in gold mine tailings, Geochemistry: Exploration, Environment, Analysis, 15, 273-291. https://doi.org/10.1144/geochem2013-238
  28. Yoshikawa, N., Xie, G., Cao, Z., and Louzguine, D.V. (2012) Microwavestructure of selectively heated(hot spot) region in $Fe_3O_4$ powder compacts by microwave irradiation, Journal of the European Ceramic Society, 32, 419-424. https://doi.org/10.1016/j.jeurceramsoc.2011.08.028

피인용 문헌

  1. Observability of Invisible Gold using BSE Imagery and Gold Recovery by Microwave-Nitric Acid Leaching vol.57, pp.1, 2017, https://doi.org/10.32390/ksmer.2020.57.1.001