DOI QR코드

DOI QR Code

Extraction of Starch from Domestic Potato Sludge by Food-Grade Hemicellulase and its Physicochemical Properties

식품용 Hemicellulase 계열 효소를 이용한 국내산 감자 가공 부산물의 전분 추출 및 이화학적 특성

  • Choi, Jung-Min (Department of Food Science and Technology, Institute of Life Science & Resource, Kyung Hee University) ;
  • Park, Cheon-Seok (Department of Food Science and Technology, Institute of Life Science & Resource, Kyung Hee University) ;
  • Baik, Moo-Yeol (Department of Food Science and Technology, Institute of Life Science & Resource, Kyung Hee University) ;
  • Kim, Hyun-Seok (Department of Food Science and Biotechnology, Kyonggi University) ;
  • Seo, Dong-Ho (Research Group of Gut Microbiome, Korea Food Research Institute)
  • 최정민 (경희대학교 식품생명공학과) ;
  • 박천석 (경희대학교 식품생명공학과) ;
  • 백무열 (경희대학교 식품생명공학과) ;
  • 김현석 (경기대학교 식품생물공학과) ;
  • 서동호 (한국식품연구원 장내미생물연구단)
  • Received : 2017.04.17
  • Accepted : 2017.07.10
  • Published : 2017.08.31

Abstract

The objective of this study was to increase the efficiency of starch extraction from potato sludge by different concentration of food-grade hemicellulase. The potato sludge, which is a by-product of potato processing industry, was treated with food-grade hemicellulase. Starch extraction efficiency displayed no significant difference in hemicellulase concentration. The purities of potato starch increased from 83.40 to 95.91, 97.44, 95.58, and 97.79%, with treated 0.5, 0.75, 1.0, and 1.5% hemicellulase, respectively. The physicochemical properties of the starches, such as granule structure, particle size, pasting, and thermal transition, were not affected by the concentration of hemicellulase. These results indicate that food-grade hemicellulase treatment is an efficient method for starch extraction from potato sludge.

감자 가공부산물에 $Laminex^{(R)}$ BG2를 처리하여 유세포를 파괴 및 비전분성 다당체를 제거하여 전분을 추출한 결과 효소의 농도와 상관없이 총 전분 함량이 83%에서 96% 내외로 증가 한 것을 확인 할 수 있다. 효소 농도에 따른 감자 가공부산물 유래 전분의 물리화학적 특성을 확인한 결과, 입도크기는 $40.09{\pm}0.59{\mu}m$의 크기로 균일하게 나타났다. RVA를 측정한 결과 효소 농도 변화에 따라 조금씩 차이가 있으며 cellulase 농도가 1.5% 이상일 경우 물리화학적 특성에 영향을 미치는 것으로 보이며, 0.75% 이상의 효소를 투입 시, 효소액에 있는 불순물이 전분과 물의 결합을 방해하여 용융 온도(onset temperature)와 피크 온도(peak temperature)가 올라가는 것을 확인하였다. 하지만 SEM을 측정한 결과로는 효소 농도의 변화에 따라 감자전분의 물리화학적 특성간의 유의적 차이를 보기 힘들었다. 이를 통해 앞으로 감자 가공부산물에서 전분을 추출할 경우 감자 가공부산물의 건조중량 대비 0.5% (v/w)의 $Laminex^{(R)}$ BG2만 첨가하여도 물리화학적 특성 변화가 적으면서, 높은 감자 전분 추출 효율을 유지할 수 있다.

Keywords

Acknowledgement

Supported by : 농림축산식품부

References

  1. Ahmad FB, Williams PA. 1998. Rheological properties of sago starch. J. Agric. Food Chem. 46: 4060-4065. https://doi.org/10.1021/jf980381o
  2. Al-Malah K, Azzam M, Abu-Jdayil B. 2000. Effect of glucose concentration on the rheological properties of wheat-starch dispersions. Food Hydrocoll. 14: 491-496. https://doi.org/10.1016/S0268-005X(00)00029-1
  3. Alexander R. 1995. Potato starch: new prospects for an old product. Cereal Food World 40: 763-764.
  4. Alvani K, Qi X, Tester RF, Snape CE. 2011. Physico-chemical properties of potato starches. Food Chem. 125: 958-965. https://doi.org/10.1016/j.foodchem.2010.09.088
  5. AOAC. 2007. Official methods of analysis, Association of Analytical Chemists No. 996.11, Arlington, VA, USA.
  6. Bhat M. 2000. Cellulases and related enzymes in biotechnology. Biotechnol. Adv. 18: 355-383. https://doi.org/10.1016/S0734-9750(00)00041-0
  7. Cho HM, Park YE, Cho JH, Kim SY. 2003. Historical review of land race potatoes in Korea. J. Korean Soc. Horticultural Sci. 44: 838-845.
  8. Choi HD, Lee HC, Kim SS, Kim YS, Lim HT, Ryu GH. 2008. Nutrient components and physicochemical properties of new domestic potato cultivars. Korean J. Food Sci. Technol. 40: 382-388.
  9. Dufresne A, Dupeyre D, Vignon MR. 2000. Cellulose microfibrils from potato tuber cells: processing and characterization of starch-cellulose microfibril composites. J. Appl. Polym. Sci. 76: 2080-2092. https://doi.org/10.1002/(SICI)1097-4628(20000628)76:14<2080::AID-APP12>3.0.CO;2-U
  10. Faridnia F, Burritt DJ, Bremer PJ, Oey I. 2015. Innovative approach to determine the effect of pulsed electric fields on the microstructure of whole potato tubers: Use of cell viability, microscopic images and ionic leakage measurements. Food Res. Int. 77: 556-564. https://doi.org/10.1016/j.foodres.2015.08.028
  11. Food K, Association D. 2015. Food standards codex. Korean Foods Industry Association. Seoul, Korea, pp. 367-368.
  12. Hoff J, Castro MD. 1969. Chemical composition of potato cell wall. J. Agric. Food Chem. 17: 1328-1331. https://doi.org/10.1021/jf60166a058
  13. Hoover R. 2001. Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohyd. Polym. 45: 253-267. https://doi.org/10.1016/S0144-8617(00)00260-5
  14. KOSIS. 2016. A Survey of raw materials consumption in food industry by 2015. In: Ministry of Agriculture Food and Rural Affairs, Sejong, Korea.
  15. Kum JS, Lee HY. 1999. The effect of the varieties and particle size on the properties of rice flour. Korean J. Food Sci. Technol. 31: 1542-1548.
  16. Kwon O, Kim H, Oh S, Lee J, Kim H, Yoon W, Kim H, Park C, Kim M. 2006. Nutrient composition of domestic potato cultivars. J. East Asian Soc. Dietary Life 16: 740-746.
  17. Lee JE, Jun JY, Kang W-S, Lim JD, Kim DE, Lee KY, Ko S. 2008. Effect of particle size on the solubility and dispersibility of endosperm, bran, and husk powders of rice. Food Sci. Biotechnol. 17: 833-838.
  18. Lee YJ, Jeong JC, Yoon YH, Hong SY, Kim SJ, Jin YI, Nam JH, Kwon OK. 2012. Evaluation of Quality Characteristics and Definition of Utilization Category in Korean Potato (Solanum tuberosum L.) Cultivars. Korean J. Crop Sci. 57: 271-279. https://doi.org/10.7740/kjcs.2012.57.3.271
  19. Liu Q, Tarn R, Lynch D, Skjodt NM. 2007. Physicochemical properties of dry matter and starch from potatoes grown in Canada. Food Chem. 105: 897-907. https://doi.org/10.1016/j.foodchem.2007.04.034
  20. Rasenack N, Müller BW. 2004. Micron?size drug particles: common and novel micronization techniques. Pharm. Dev. Technol. 9: 1-13. https://doi.org/10.1081/PDT-120027417
  21. Seo DH, Kim MS, Choi HW, Sung JM, Choi YS, Park CS, Baik MY, Kim HS. 2016. Improvement of starch extraction efficiency from potato with cellulase family. Food Eng. Prog. 20: 78-83. https://doi.org/10.13050/foodengprog.2016.20.1.78
  22. Singh N, Kaur L. 2004. Morphological, thermal, rheological and retrogradation properties of potato starch fractions varying in granule size. J. Sci. Food Agric. 84: 1241-1252. https://doi.org/10.1002/jsfa.1746
  23. Sriroth K, Chollakup R, Chotineeranat S, Piyachomkwan K, Oates CG. 2000. Processing of cassava waste for improved biomass utilization. Bioresour. Technol. 71: 63-69. https://doi.org/10.1016/S0960-8524(99)00051-6
  24. Xiao C, Anderson CT. 2013. Roles of pectin in biomass yield and processing for biofuels. Front. Plant Sci. 4: 67.
  25. Zurbriggen BD, Penttila ME, Viikari L, Bailey MJ. 1991. Pilot scale production of a Trichoderma reesei endo-${\beta}$-glucanase by brewer's yeast. J. Biotechnol. 17: 133-146. https://doi.org/10.1016/0168-1656(91)90004-F