DOI QR코드

DOI QR Code

Identification and Fermentation Characteristics of Lactic Acid Bacteria that Produce Soy Curd With Low Sour Taste

저산미의 두유 커드를 생성하는 젖산균의 동정과 발효 특성

  • Kim, Su-In (Department of Food Science & Technology, Pusan National University) ;
  • Jung, Min-Gi (Department of Food Science & Technology, Pusan National University) ;
  • Lee, Seung-Min (Department of Food Science & Technology, Pusan National University) ;
  • Kang, Moon-Sun (Department of Food Science & Technology, Pusan National University) ;
  • Seong, Jong-Hwan (Department of Food Science & Technology, Pusan National University) ;
  • Lee, Young-Geun (Department of Food Science & Technology, Pusan National University) ;
  • Kim, Han-Soo (Department of Food Science & Technology, Pusan National University) ;
  • Chung, Hun-Sik (Department of Food Science & Technology, Pusan National University) ;
  • Kim, Dong-Seob (Department of Food Science & Technology, Pusan National University)
  • Received : 2017.05.29
  • Accepted : 2017.08.01
  • Published : 2017.08.31

Abstract

The acidity of soy curd fermented by lactic acid bacteria is a major factor degrading the sensory properties of soy curd. For preparation of soy curd with low sour taste, lactic acid bacteria were separated from kimchi. The lactic acid bacteria which showed yellow-clear zone around the colonies on BCP plate and formed soy curd with low level of acidity were selected. The selected strain was analyzed by 16S rDNA sequence and named as Pediococcus inopinatus Y2. The maximum viable cell number of the soy curd fermented by P. inopinatus Y2 was obtained at 10.73 log CFU/mL at $25^{\circ}C$ for 24 h of fermentation. By the results of panel test, the overall sensory quality of the soy curd produced by P. inopinatus Y2 was higher than that of Leuconostoc mesenteroides No. 4395 and Lactobacillus sakei strain No. 383.

많은 선행연구에서 젖산균 발효 두유 커드의 우수성이 입증이 되었지만 젖산균으로 발효된 두유 커드의 높은 산도는 관능성을 저해하는 주요 요인으로 작용하여 제품의 개발로 이어지기 쉽지 않았다. 본 실험에서는 두유 커드 발효 시 관능성을 높일 수 있는 젖산균을 김치로부터 분리하여 선별된 균주를 이용한 저산도 두유 커드를 제조하였다. 최종 선별된 젖산균은의 16S rDNA 염기서열 분석을 통하여 Pediococcus inopinatus로 동정되었고 P. inopinatus Y2로 명명하였다. P. inopinatus Y2는 $30^{\circ}C$에서 배양 시 가장 빠르게 대수기에 이르는 것으로 나타났으며 $25^{\circ}C$에서 24 시간 발효 시 10.73 log CFU/mL의 최대 생균수를 보였다. P. inopinatus Y2에 의해 발효된 두유 커드의 관능검사 결과 L. sakei strain No. 383, Leu. mesenteroides strain No. 4395에 의해 발효된 두유 커드보다 전반적인 기호도가 높은 것으로 나타났는데 이러한 결과를 토대로 P. inopinatus Y2로 발효된 두유 커드는 식품 개발에 이용할 수 있을 것이라 사료된다.

Keywords

Acknowledgement

Supported by : 부산대학교

References

  1. Adlercreutz CH, Goldin BR, Gorbach SL, Hockerstedt KA, Watanabe S, Hamalainen EK, Markkanen MH, Makela TH, Wahala KT, Hase TA, Fotsis T. 1995. Soybean phytoestrogen intake and cancer risk. J. Nutr. 125: 757S-770S.
  2. Ali AA, Velasquez MT, Hansen CT, Mohamed AI, Bhathena SJ. 2004. Effects of soybean isoflavones, probiotics, and their interactions on lipid metabolism and endocrine system in an animal model of obesity and diabetes. J. Nutr. Biochem. 15: 583-590. https://doi.org/10.1016/j.jnutbio.2004.04.005
  3. Anderson JJB, Anthony M, Messina M, Garner SC. 1999. Effects of phyto-oestrogens on tissues. Nutr. Res. Rev. 12: 75-116. https://doi.org/10.1079/095442299108728875
  4. Aoyama M, Yasuda M, Nakachi K, Kobamoto N, Oku H, Kato F. 2000. Soybean-milk-coagulating activity of Bacillus pumilus derives from a serine proteinase. Appl. Microbiol. Biotechnol. 53: 390-395. https://doi.org/10.1007/s002530051631
  5. Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP, Sacks FM, Bray GA, Vogt TM, Cutler JA, Windhauser MM, Lin PH, Karanja J, Lawrence J, for the DASH Collaborative Research Group. 1997. A clinical trial of the effects of dietary patterns on blood pressure. N. Engl. J. Med. 336: 1117-24. https://doi.org/10.1056/NEJM199704173361601
  6. Castro JM, Tornadijo ME, Fresno JM, Sandoval H. 2015. Biocheese: A food probiotic carrier. BioMed. Res. Int. 2015, doi:10.1155/2015/723056.
  7. Chiang SS, Pan TM. 2011. Antiosteoporotic effects of Lactobacillus-fermented soy skim milk on bone mineral density and the microstructure of femoral bone in ovariectomized mice. J. Agric. Food Chem. 59: 7734-7742. https://doi.org/10.1021/jf2013716
  8. Franke AA, Custer LJ, Cerna CM, Narala KK. 1994. Quantitation of phytoestrogens in legumes by HPLC. J. Agric. Food Chem. 42: 1905-1913. https://doi.org/10.1021/jf00045a015
  9. Fuke Y, Sekiguchi M, Matsuoka H. 1985. Nature of stem bromelain treatments on the aggregation and gelation of soybean proteins. J. Food Sci. 50: 1283-1288. https://doi.org/10.1111/j.1365-2621.1985.tb10462.x
  10. Fuquay JW, Fox PF, McSweeney PL. 2011. Encyclopedia of Dairy Sciences. 2nd Edition, Four-Volume set. Academic Press, San Diego, CA, United States, pp 2245-2247.
  11. Goetzl MA, Vanveldhuizen PJ, Thrasher JB. 2007. Effects of soy phytoestrogens on the prostate. Prostate Cancer Prostatic Dis. 10: 216-223. https://doi.org/10.1038/sj.pcan.4500953
  12. Hammond BG, Jez JM. 2011. Impact of food processing on the safety assessment for proteins introduced into biotechnologyderived soybean and corn crops. Food Chem. Toxicol. 49: 711-721. https://doi.org/10.1016/j.fct.2010.12.009
  13. Hang YD, Jackson H. 1967. Preparation of soybean cheese using lactic starter organisms: I. General characteristics of the finished cheese. Food Technol. 21: 95-96.
  14. Helrich KC. 1990. Official methods of Analysis of the AOAC. 1990. Volume 2. No. Ed. 15. Association of Official Analytical Chemists Inc.
  15. Holazpfel WH, Franz CMAP, Ludwig W, Dicks LMT. 2009. Genus III. Pediococcus Claussen 1903, 68AL. In: Bergey's Manual of Systematic Bacteriology, 2nd ed., vol. 3 (The Firmicutes) (De Vos P., Garrity G., Jones D., Krieg N.R., Ludwig W., Rainey F.A., Schleifer K.-H., and Whitman W.B., eds.). Springer-Verlag, New York, United States, pp 513-532.
  16. Horn-Ross PL, Barnes S, Lee M, Coward L, Mandel JE, Koo J, John EM, Smith M. 2000. Assessing phytoestrogen exposure in epidemiologic studies: development of a database (United States). Cancer Causes Control. 11: 289-298. https://doi.org/10.1023/A:1008995606699
  17. Hsieh ML, Chou CC. 2006. Mutagenicity and antimutagenic effect of soymilk fermented with lactic acid bacteria and bifodobacteria. J. Food Microbiol. 111: 43-47. https://doi.org/10.1016/j.ijfoodmicro.2006.04.034
  18. Inouye K, Nagai K, Takita T. 2002. Coagulation of soy protein isolates induced by subtilis in Carlsberg. J. Agric. Food Chem. 50: 1237-1242. https://doi.org/10.1021/jf011271b
  19. Jooyandeh H. 2011. Soy products as healthy and functional foods. Middle-East J. Scientific Res. 7: 71-80.
  20. Kaushik JK, Kumar A, Duary RK, Mohanty AK, Grover S, Batish VK. 2009. Functional and probiotic attributes of an indigenous isolate of Lactobacillus plantarum. PLoS ONE 4: 8099. https://doi.org/10.1371/journal.pone.0008099
  21. Kim RU, Ahn SC, Yu SN, Kim KY, Seong JH, Lee YG, Kim HS, Kim DS. 2011. Screening and identification of soy curd-Producing lactic acid bacteria. J. Life Sci. 21: 235-241. https://doi.org/10.5352/JLS.2011.21.2.235
  22. Lee BH, Lo YH, Pan T. M. 2013. Anti-obesity activity of Lactobacillus fermented soy milk products. J. Funct. Foods 5: 905-913. https://doi.org/10.1016/j.jff.2013.01.040
  23. Liu D, Li L, Yang X, Liang S, Wang J. 2006. Survivability of Lactobacillus rhamnosus during the preparation of soy cheese. Food Technol. Biotech. 44: 417-422.
  24. L'Hocine L, Boye J. 2007. Allergenicity of soybean: new developments in identification of allergenic proteins, cross reactivities and hypoallergenization technologies. Crit. Rev. Food Sci. Nutr. 47: 127-43. https://doi.org/10.1080/10408390600626487
  25. Liu CF, Hu CL, Chiang SS, Tseng KC, Yu RC, Pan TM. 2009. Beneficial preventive effects of gastric mucosal lesion for soyskim milk fermented by lactic acid bacteria. J. Agric. Food Chem. 57: 4433-4438. https://doi.org/10.1021/jf900465c
  26. Nagata C, Takatsuka N, Kurisu Y, Shimizu H. 1998. Decreased serum total cholesterol concentration is associated with high intake of soy products in Japanese men and women. J. Nutr. 128: 209-213. https://doi.org/10.1093/jn/128.2.209
  27. Omoruyi FO, Dilworth L, Asemota HN. 2007. Antinutritional factors, zinc, iron and calcium in some Caribbean tuber crops and the effect of boiling or roasting. Nutr. Food Sci. 37: 8-15. https://doi.org/10.1108/00346650710726904
  28. Onder M, Kahraman A. 2009. Antinutritional factors in food grain legumes. 1st International Syposium on Sustainable Development. 3: 40-44. June 8-10, Sarajevo-Bosnia.
  29. Osman AM. 2007. Effect of different processing methods on nutrientcomposition, anti-nutritional factors and in vitro protein digestibility on Dolichos lablab bean (Lablab purpureus (L) Sweet). Pak. J. Nutr. 6: 299-303. https://doi.org/10.3923/pjn.2007.299.303
  30. Park MJ, Lee SY. 1997. Effects of lactose and yeast on the growth of lactic acid bacteria and sensory characteristics during the fermentation of soy yogurts. Korean J. Food Sci. Technol. 29: 533-538.
  31. Potter NN, Hotchkiss JH. 1999. Food science, 5th ed. Springer, New York, USA.
  32. Rodrigues HG, Diniz YS, Faine L, Gklhardi CM, Burneiko R, Almeida J, Ribas B, Novelli, ELB. 2005. Antioxidant effect of saponin: potential action of a soybean flavonoid on glucose tolerance and risk factors for atherosclerosis. J. Food. Sci. Nutr. 56: 79-85.
  33. Sanders ME.1998. Overview of functional foods: emphasis on probiotic bacteria. Int. Dairy J. 8: 341-347. https://doi.org/10.1016/S0958-6946(98)00056-9
  34. Setchell KDR, Cassidy A. 1999. Dietary isoflavones: Biological effects and relevance to human health. J. Nutr. (Suppl.). 129: 758-767.
  35. Singh P, Kumar R, Sabapathy SN, Bawa AS. 2008. Functional and edible uses of soy protein products. Compr. Rev. Food Sci. Food Saf. 7: 14-28. https://doi.org/10.1111/j.1541-4337.2007.00025.x
  36. Takekawa S., Matsui T, Arakawa Y. 2006. The protective effect of the soybean polyphenol genistein against stress-induced gastric mucosal lesions in rats, and its hormonal mechanisms. J. Nutr. Sci. Vitaminol. 52: 274-280. https://doi.org/10.3177/jnsv.52.274
  37. Taku K, Melby MK, Kronenberg F, Kurzer MS, Messina M. 2012. Extracted or synthesized soybean isoflavones reduce menopausal hot flash frequency and severity: systematic review and meta-analysis of randomized controlled trials. Menopause 19: 776-790. https://doi.org/10.1097/gme.0b013e3182410159
  38. Taku K, Umegaki K, Sato Y, Taki Y, Endoh K, Watanabe S. 2007. Soy isoflavones lower serum total and LDL cholesterol in humans: a meta-analysis of 11 randomized controlled trials. Am. J. Clin. Nutr. 85: 1148-1156. https://doi.org/10.1093/ajcn/85.4.1148
  39. Tham DM, Gardner CD, Haskell WL. 1998. Potential health benefits of dietary phytoestrogens: A review of the clinical, epidemiological, and mechanistic evidence. J. Clin. Endocrinol. Metab. 83: 2223-2235.
  40. Tsai YT, Cheng PC, Pan TM. 2014. Anti-obesity effects of gut microbiota are associated with lactic acid bacteria. Appl. Microbiol. Biotechnol. 98: 1-10. https://doi.org/10.1007/s00253-013-5346-3
  41. Van der Schouw YT, De Kleijn MJ, Peeters PH, Grobbee DE. 2000. Phyto-oestrogens and cardiovascular disease risk. Nutr. Metab. Cardiovasc. Dis. 10: 154-167.
  42. Wang YC, Yu RC, Chou CC. 2006. Antioxidatives activities of soymilk fermented with lactic acid bacteria and bifidobacteria. Food Microbiol. 23: 128-135. https://doi.org/10.1016/j.fm.2005.01.020
  43. Wei H, Bowen R, Cai Q, Barnes S, Wang Y. 1995. Antioxidant and antipromotional effects of the soybean isoflavone genistein. Proc. Soc. Exp. Biol. Med. 208: 124-30. https://doi.org/10.3181/00379727-208-43844