DOI QR코드

DOI QR Code

The Far-infrared Drying Characteristics of Steamed Sweet Potato

증자 호박고구마의 원적외선 건조특성

  • Lee, Dong Il (Department of Biosystems Engineering, Chungbuk National University) ;
  • Lee, Jung Hyun (Laboratory of Agricultural and Food Process Engineering, Hokkaido University) ;
  • Cho, Byeong Hyo (Department of Biosystems Engineering, Chungbuk National University) ;
  • Lee, Hee Sook (Department of Consumer Studies, Chungbuk National University) ;
  • Han, Chung Su (Department of Biosystems Engineering, Chungbuk National University)
  • 이동일 (충북대학교 바이오시스템공학과) ;
  • 이정현 (홋카이도대학교 농학부) ;
  • 조병효 (충북대학교 바이오시스템공학과) ;
  • 이희숙 (충북대학교 소비자학과) ;
  • 한충수 (충북대학교 바이오시스템공학과)
  • Received : 2016.12.15
  • Accepted : 2017.01.27
  • Published : 2017.02.28

Abstract

The purpose of this study was to verify the drying characteristics of steamed sweet potato and to establish optimal drying conditions for far-infrared drying of steamed sweet potato. 4 kg of steamed sweet potato was sliced to thicknesses of 8 and 10 mm, and dried by a far-infrared dryer until a final moisture content of $25{\pm}0.5%$. The far-infrared dryer conditions were an air velocity of 0.6, 0.8 m/s and drying temperature of 60, 70, and $80^{\circ}C$. The results can be summarized as follows. The drying time tended to be reduced as temperature and air velocity for drying increased. The Lewis and Modified Wang and Singh models were found to be suitable for drying of steamed sweet potato by a far-infrared dryer. The color difference was 35.09 on the following conditions: Thickness of 8 mm, temperature of $80^{\circ}C$, and air velocity of 0.8 m/s. The highest sugar content ($59.11^{\circ}Brix$) was observed on the conditions of a thickness of 8 mm, temperature of 80, and air velocity of 0.8 m/s. Energy consumption decreased on the conditions of higher temperature, slower air velocity, and thinner steamed sweet potato.

본 연구에서는 원적외선을 이용하여 증자 호박고구마를 건조할 경우 건조두께, 건조온도와 송풍속도에 따른 건조특성과 건조제품의 색도변화 및 당도 등의 품질특성을 분석함으로써 증절간 호박고구마의 원적외선 건조를 위한 기초 자료를 제시하고자 하였다. 원적외선 건조의 경우 열풍건조와 비교하여 열효율이 높고, 건조속도가 빠르며, 피건조물의 품질이 우수하기 때문에 열풍건조의 단점을 보완할 수 있다(Ning, 2012). 그 결과를 요약하면 다음과 같다. 증자 호박고구마의 건조속도는 건조두께가 얇고, 건조온도가 높으며, 송풍속도가 빠를수록 증가하는 경향을 보였으며, 건조두께 8 mm, 건조온도 $80^{\circ}C$, 송풍속도 0.8 m/s 조건이 가장 빠른 것으로 나타났다. 본 연구에서 검증한 건조모델 중 Lewis 및 Modified Wang & Singh 모델의 경우 전체적인 건조시간대에서 비교적 잘 일치하는 것으로 나타나, 증자 고구마의 원적외선 건조 시 Lewis 및 Modified Wang & Singh 모델을 이용할 경우 높은 정밀도에서 건조시간 예측이 가능한 것으로 나타났다. 원적외선 건조 후 증절간 고구마의 색차(${\Delta}E$) 값은 건조온도가 낮고, 송풍속도가 느릴수록 낮은 경향을 보였으며, 건조두께 10 mm 조건이 8 mm 조건보다 색차가 적은 것으로 나타났다. 특히, 건조두께 10 mm, 건조온도 $60^{\circ}C$, 송풍속도 0.8 m/s 조건에서 색차값은 28.33으로 가장 낮은 것으로 나타났다. 당도는 건조두께가 얇고, 건조온도가 높으며, 송풍속도가 느릴수록 높은 경향을 보였다. 증자 호박고구마 건조 중 에너지 소비량은 건조온도가 높고, 송풍속도가 느리며, 건조두께가 얇을수록 감소하였으며, 건조두께 8 mm, 건조온도 $80^{\circ}C$, 송풍속도 0.6 m/s 조건에서 에너지 소비량은 12.06 kWh/kg-water로 가장 적은 값을 보였다. 따라서 증자 호박고구마의 건조시간, 색도변화, 당도 함량 및 에너지 소비량 등을 고려하면 증절간 호박고구마의 고품질화를 위해서는 건조두께 8 mm, 건조온도 $80^{\circ}C$, 송풍속도 0.6 m/s 조건이 적절한 것으로 판단된다.

Keywords

References

  1. Altan A, Maskan M. 2005. Microwave assisted drying of short-cut (ditalini) macaroni : drying characteristics and effect of drying processes on starch properties. Food Res. Int. 38: 787-796. https://doi.org/10.1016/j.foodres.2005.02.006
  2. Cho BH, Lee JH, Kang TH, Lee HS, Han CS. 2016. Far infrared drying characteristics of seasoned red pepper sauce dried by heated air. J. Korean Soc. Food Sci. Nutr. 45: 1358-1365. https://doi.org/10.3746/jkfn.2016.45.9.1358
  3. Hwang IG, Byun JY, Kim KM, Chung MN, Yoo SM. 2014. Vitamin C quantification of korean sweet potatoes by cultivar and cooking method. J. Korean Soc. Food Sci. Nutr. 43: 955-961. https://doi.org/10.3746/jkfn.2014.43.6.955
  4. Jang GY, Li M, Lee SH, Woo KS, Sin HM, Kim HS, Lee JS, Jeong HS. 2013. Quality characteristics of sweet potato varieties baked and freeze thawed. J. Korean Soc. Food Sci. Nutr. 42: 403-409. https://doi.org/10.3746/jkfn.2013.42.3.403
  5. Ji CG. 1992. Characteristics and effects of far infrared rays. Signal Image & Video 183: 18-26.
  6. Kang TH, Hong HK, Jeon HY, Han CS. 2011. Drying characteristics of squids according to far infrared and heated air drying conditions. J. Biosystems Eng. 36: 109-115. https://doi.org/10.5307/JBE.2011.36.2.109
  7. Korea Food and Drug Administration. 2011. NLS standard operating procedure analytical methods. Cheongjo, Korea, pp. 5-27.
  8. Korea Statistical Information Service. 2016. Farm households by harvest area of sweet potato. Available from: http://kosis.kr. Accessed Dec. 3, 2016.
  9. Kum JS, Silva JL, Han O. 1994. Effects of microwave heating on processing of whole sweet potatoes. Korean J. Food Cook. Sci. 10: 138-141.
  10. Kwon SM. 2010. Development of processed food utilizing pumpkin sweet potatoes. MS thesis, Hanseo University, Seosan, Korea.
  11. Lee DI. 2015. Far-infrared drying characteristics of steamed sweet potato. MS thesis, Chungbuk National University, Cheongju, Korea.
  12. Lee MK, Kim SH, Ham SS, Lee SY, Chung CK, Kang IJ, Oh DH. 2000. The effect of far infrared ray-vacuum drying on the quality changes of pimpinella bracycaarpa. J. Korean Soc. Food Sci. Nutr. 43: 561-567.
  13. Lee SK, Park WJ, Kim W, Kang MH, Jeon MJ, Paik SW, Han JW. 2010. Analysis of the drying characteristics of lycii fructus with drying plates. J. Biosystems Eng. 35: 250-256. https://doi.org/10.5307/JBE.2010.35.4.250
  14. Li H. 2009. Drying and quality characteristics of agricultural and fishery products using far infrared rays. Ph.D. thesis, Chungbuk National University, Cheongju, Korea.
  15. Ning XF. 2012. Drying characteristics and quality of agricultural products using combined drying of microwave and far-infrared. Ph.D. thesis, Chungbuk National University, Cheongju, Korea.
  16. Ning XF, Han CS, Cho SC, Lee JS, Yoon SS. 2013. Far infrared drying characteristics and quality assessment of ligularia fischeri. Korean J. Food Sci. Technol. 22: 281-288.
  17. Ning XF, Han CS, Li H. 2012. A mathematical model for color changes in red pepper during far infrared drying. J. Biosystems Eng. 37: 327-334. https://doi.org/10.5307/JBE.2012.37.5.327
  18. Ning XF, Li H, Kang TH, Lee JS, Lee JH, Han CS. 2014. Thin layer drying and quality characteristics of ainsliaea acerifolia sch. bip. Using far infrared radiation. J. Korean Soc. Food Sci. Nutr. 43: 884-892. https://doi.org/10.3746/jkfn.2014.43.6.884
  19. Rhim JW, Nunes RV, Jones VA, Swartzel KR. 1989. Kinetics of color change of grape juice generated using linearly increasing temperature. J. Food Sci. 54: 776-777. https://doi.org/10.1111/j.1365-2621.1989.tb04710.x
  20. Song JH, Kim SK, Chun Ch, 2011, Application of simplified curing unit for the extension of storage life and improvement of physicochemical quality of sweet potatoes during long-term storage. J. Bio-Environment Control 20: 304-310.

Cited by

  1. Far Infrared Drying Characteristics of the Microwave-Steamed Sweet Potato vol.44, pp.4, 2017, https://doi.org/10.1007/s42853-019-00028-8
  2. Production of High-Quality, Semi-dried Dorumuk (Arctoscopus japonicus) through Infrared-Assisted Air Drying vol.23, pp.4, 2017, https://doi.org/10.13050/foodengprog.2019.23.4.265
  3. Rapid Production of Dried Sea Cucumber (Stichopus japonicus) Using Infrared Assisted Freeze Drying (IRAFD) vol.24, pp.4, 2020, https://doi.org/10.13050/foodengprog.2020.24.4.292
  4. Comparison of Quality Characteristics of Dried Sweet Potatoes From Korea, China, and Japan vol.24, pp.4, 2020, https://doi.org/10.13050/foodengprog.2020.24.4.366