참고문헌
- Allen, T. (2013), "Mechanics of flexible composite hull panels subjected to water impacts", Ph.D. Dissertation, University of Auckland, New Zealand.
- Aly, A.M., Asai, M., and Sonoda, Y. (2011), "Simulation of free falling rigid body into water by a stabilized incompressible SPH method", Ocean Syst. Eng., 1(3), 207-222. https://doi.org/10.12989/ose.2011.1.3.207
- Antoci, C., Gallati, M. and Sibilla, S. (2007), "Numerical simulation of fluid-structure interaction by SPH", Comput. Struct., 85, 879-890. https://doi.org/10.1016/j.compstruc.2007.01.002
- Aquelet, N. and Souli, M. (2003), "Damping effect in fluid-structure interaction: application to slamming problem", Proceedings of the ASME Pressure Vessel and Piping Conference, Cleveland, OH, USA.
- Bathe, K.J. and Irfan Baig, M.M. (2005), "On a composite implicit time integration procedure for nonlinear dynamics", Comput. Struct., 83, 2513-2524. https://doi.org/10.1016/j.compstruc.2005.08.001
- Camilleri, J., Temarel, P. and Taunton, D. (2015), "Two-dimensional numerical modelling of slamming impact loads on high-speed craft", Proceedings of the 7th International Conference on Hydroelasticity in Marine Technology Split, Croatia.
- Campbell, J.C., Vignjevic, R. and Patel, M. (2010), "Modelling fluid-structure impact with the coupled FESPH approach", Proceedings of the William Froude Conference on Advances in Theoretical and Applied Hydrodynamic, Portsmouth, UK.
- Das, K. and Batra, R. (2011), "Local water slamming impact on sandwich composite hulls", J. Fluid. Struct., 27, 523-551. https://doi.org/10.1016/j.jfluidstructs.2011.02.001
- De Backer, G., Vantorre, M., Beels, C., De Pre, J., Victor, S., De Rouck, J., Blommaert, C. and Van Paepegem, W. (2009), "Experimental investigation of water impact on axisymmetric bodies", Appl. Ocean Res., 31, 143-156 https://doi.org/10.1016/j.apor.2009.07.003
- Faltinsen, O.M. (1999), "Water entry of a wedge by hydroelastic orthotropic plate theory", J. Ship Res., 43, 180-193.
- Faltinsen, O.M. (2002), "Water entry of a wedge with finite deadrise angle", J. Ship Res., 46, 39-51.
- Fourey, G., Oger, G., Le Touze, D. and Alessandrini, B. (2010), "Violent Fluid-Structure Interaction simulations using a coupled SPH/FEM method", IOP Conf. Series: Materials Science and Engineering, 10, 012041.
- Gingold, R.A. and Monaghan, J.J. (1977). "Smoothed particle hydrodynamics - theory and application to nonspherical stars", Mon. Not. R. Astron. Soc., 181, 375-389. https://doi.org/10.1093/mnras/181.3.375
- Gotoh, H. and Khayyer, A. (2016), "Current achievements and future perspectives for projection-based particle methods with applications in ocean engineering", J. Ocean Eng. Mar. Energy, 2, 251-278. https://doi.org/10.1007/s40722-016-0049-3
- Gotoh, H., Shibahara, T. and Sakai, T. (2001) "Sub-particle-scale turbulence model for the MPS method-Lagrangian flow model for hydraulic engineering", Comput. Fluid Dyn., 9(4), 339-347.
- Hwang, S.C., Khayyer, A., Gotoh, H. and Park, J.C. (2014), "Development of a fully Lagrangian MPS-based coupled method for simulation of fluid-structure interaction problems", J. Fluid. Struct., 50, 497-511. https://doi.org/10.1016/j.jfluidstructs.2014.07.007
- Hwang, S.C., Khayyer, A., Gotoh, H. and Park, J.C. (2015), "Simulations of incompressible fluid flow-elastic structure interactions by a coupled fully Lagrangian solver", Proceedings of the 25th International Ocean and Polar Engineering Conference Kona, Big Island, Hawaii, USA.
- Hwang, S.C., Park, J.C., Gotoh, H., Khayyer, A. and Kang, K.J. (2016), "Numerical simulations of sloshing flows with elastic baffles by using a particle-based fluid-structure interaction analysis method", Ocean Eng., 118, 227-241. https://doi.org/10.1016/j.oceaneng.2016.04.006
- Khayyer, A. and Gotoh, H. (2009), "Modified moving particle semi-implicit methods for the prediction of 2D wave impact pressure", Coast. Eng., 56, 419-440. https://doi.org/10.1016/j.coastaleng.2008.10.004
- Khayyer, A. and Gotoh, H. (2010), "A higher order Laplacian model for enhancement and stabilization of pressure calculation by the MPS method", Appl. Ocean Res., 32, 124-131. https://doi.org/10.1016/j.apor.2010.01.001
- Khayyer, A. and Gotoh, H. (2011), "Enhancement of stability and accuracy of the moving particle semiimplicit method", J. Comput. Phys., 230, 3093-3118. https://doi.org/10.1016/j.jcp.2011.01.009
- Khayyer, A. and Gotoh, H. (2013), "Enhancement of performance and stability of MPS meshfree particle method for multiphase flows characterized by high density ratios", J. Comput. Phys., 242, 211-233. https://doi.org/10.1016/j.jcp.2013.02.002
- Khayyer, A. and Gotoh, H. (2016), "A multiphase compressible-incompressible particle method for water slamming", Int. J. Offshore Polar., 26(1), 20-25.
- Khayyer, A., Gotoh, H. and Shimizu, Y. (2017a), "Comparative study on accuracy and conservation properties of two particle regularization schemes and proposal of an optimized particle shifting scheme in ISPH context", J. Comput. Phys., 332, 236-256. https://doi.org/10.1016/j.jcp.2016.12.005
- Khayyer, A., Gotoh, H., Shimizu, Y. and Gotoh, K. (2017b), "On enhancement of energy conservation properties of projection-based particle methods", Eur. J. Mech. B/Fluids, 66, 20-37. https://doi.org/10.1016/j.euromechflu.2017.01.014
- Kondo, M., Tanaka, M., Harada, T. and Koshizuka, S. (2007), "Elastic objects for computer graphic field using MPS method", ACM SIGGRAPH 2007 poster (p. 53). ACM., San Diego, USA.
- Koshizuka, S. (2005), Ryushiho (Particle Method), Maruzen, Japan (in Japanese).
- Koshizuka, S. and Oka, Y. (1996), "Moving particle semi-implicit method for fragmentation of incompressible fluid", Nuclear. Sci. Eng., 123, 421-434. https://doi.org/10.13182/NSE96-A24205
- Lind S.J., Xu R., Stansby P.K. and Rogers B.D. (2012), "Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves", J. Comput. Phys., 231(4), 1499-1523. https://doi.org/10.1016/j.jcp.2011.10.027
- Lind, S.J., Stansby, P.K., Rogers, B.D. and Lloyd, P.M. (2015), "Numerical predictions of water-air wave slam using incompressible-compressible smoothed particle hydrodynamics", Appl. Ocean Res., 49, 57-71. https://doi.org/10.1016/j.apor.2014.11.001
- Liu, W., Wu, W. and Suzuki, K. (2015), "Dynamic strength of a ship based on 2D hydroelasto-plasticity and FEM in extreme waves", Proceedings of the 25th International Ocean and Polar Engineering Conference Kona, Big Island, Hawaii, USA.
- Lucy, L.B. (1977), "A numerical approach to the testing of fission hypothesis", Astronom. J., 82, 1013-1024. https://doi.org/10.1086/112164
- Marsden, J.E. and Hughes, T.J.R. (1983), "Mathematical Foundations of Elasticity", Prentice Hall: Englewood Cliffs, NJ, ISBN 0-486-67865-2, 556.
- Meringolo, D.D., Colagrossi, A., Marrone, S. and Aristodemo, F. (2017), "On the filtering of acoustic components in weakly-compressible SPH simulations", J. Fluid. Struct., 70, 1-23. https://doi.org/10.1016/j.jfluidstructs.2017.01.005
- Oger, G., Guilcher, P.M., Jacquin, E., Brosset, L., Deuff, J.B. and Le Touze, D. (2010), "Simulations of hydroelastic impacts using a parallel SPH model", Int. J. Offshore Polar., 20(3), 181-189.
- Panciroli, R., Abrate, S., Minak, G. and Zucchelli, A. (2012), "Hydroelasticity in water-entry problems: comparison between experimental and sph results", Compos. Struct., 94, 532-539. https://doi.org/10.1016/j.compstruct.2011.08.016
- Peseux, B., Gornet, L. and Donguy, B. (2005), "Hydrodynamic impact: numerical and experimental investigations", J. Fluid. Struct., 21, 277-303. https://doi.org/10.1016/j.jfluidstructs.2005.04.011
- Rabczuk, T., Belytschko, T. and Xiao, S.P. (2004), "Stable particle methods based on Lagrangian kernels", Comput. Method. Appl. Mech., 193, 1035-1063. https://doi.org/10.1016/j.cma.2003.12.005
- Randles, P.W. and Libersky, L.D. (2000), "Normalized SPH with stress points", Int. J. Numer. Meth. Eng., 48, 1445-1462. https://doi.org/10.1002/1097-0207(20000810)48:10<1445::AID-NME831>3.0.CO;2-9
- Scolan, Y.M. (2004), "Hydro-elastic behavior of a conical shell impacting on a quiescent-free surface of an incompressible liquid", J. Sound Vib., 277, 163-203. https://doi.org/10.1016/j.jsv.2003.08.051
- Slaughter, W.S. (2002), "The linearized theory of elasticity", Springer Science + Business Media, LLC, New York, ISBN 978-1-4612-6608-2, 543.
- Stenius, I., Rosen, A., Battley, M. and Allen, T. (2013), "Experimental hydroelastic characterization of slamming loaded marine panels", Ocean Eng., 74, 1-15. https://doi.org/10.1016/j.oceaneng.2013.09.007
- Sun, H. and Faltinsen, O.M. (2006), "Water impact of horizontal circular cylinders and cylindrical shells", Appl. Ocean Res., 28, 299-311. https://doi.org/10.1016/j.apor.2007.02.002
- Sun, Z., Xing, J.T., Djidjeli, K. and Cheng, F. (2015), "Coupling MPS and modal superposition method for flexible wedge dropping simulation", Proceedings of the 25th International Ocean and Polar Engineering Conference Kona, Big Island, Hawaii, USA.
- Tay, Z.Y. and Wang, C.M. (2012), "Reducing hydroelastic response of very large floating structures by altering their plan shapes", Ocean Syst. Eng., 2(1), 69-81. https://doi.org/10.12989/ose.2012.2.1.069
- Tsuruta, N., Khayyer, A. and Gotoh, H. (2013), "A short note on dynamic stabilization of moving particle semi-implicit method", Comput. Fluids, 82, 158-164. https://doi.org/10.1016/j.compfluid.2013.05.001
- Tsuruta, N., Khayyer, A. and Gotoh, H. (2016), "A novel refinement technique for projection-based particle methods", Proceedings of the 11th international SPHERIC workshop, Munich, Germany, June 2016.
- Wagner, H. (1932), "Uber stoss und gleitvorgange an der oberflache von flussigkeiten", Zeitschrift fur Angewandte Mathematik und Mechanik, 12.
- Wang, J., Lugni, C. and Faltinsen, O.M. (2015), "Experimental and numerical investigation of a freefall wedge vertically entering the water surface", Appl. Ocean Res., 51, 181-203. https://doi.org/10.1016/j.apor.2015.04.003
- Wendland, H. (1995), "Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree", Adv. Comput. Math., 4, 389-396. https://doi.org/10.1007/BF02123482
- Yang, Q., Jones, V. and McCue, L. (2012), "Free-surface flow interactions with deformable structures using an SPH-FEM model", Ocean Eng., 55, 136-147. https://doi.org/10.1016/j.oceaneng.2012.06.031
- Zhang, Y., Tang, Z. and Wan, D. (2016), "MPS-FEM coupled method for interaction between sloshing flow and elastic structure in rolling tanks", Proceedings of the 7th International Conference on Computational Methods (ICCM2016), August 1st-4th, Berkeley, CA, USA.
- Zhao, R. and Faltinsen, O.M. (1993), "Water entry of two-dimensional bodies", J. Fluid Mech., 246, 593-612. https://doi.org/10.1017/S002211209300028X
- Zhao, Y., Chen, H.C. and Yu, X. (2015), "Numerical simulation of wave slamming on 3D offshore platform deck using a coupled Level-Set and Volume-of-Fluid method for overset grid system", Ocean Syst. Eng., 5(4), 245-259. https://doi.org/10.12989/ose.2015.5.4.245
피인용 문헌
- Towards development of enhanced fully-Lagrangian mesh-free computational methods for fluid-structure interaction vol.30, pp.1, 2018, https://doi.org/10.1007/s42241-018-0005-x
- On the state-of-the-art of particle methods for coastal and ocean engineering vol.60, pp.1, 2018, https://doi.org/10.1080/21664250.2018.1436243
- TOWARDS DEVELOPMENT OF LAGRANGIAN MESHFREE HYDROELASTIC FSI SOLVERS BY INCORPORATING IMPLICIT STRUCTURE SOLVERS vol.75, pp.2, 2017, https://doi.org/10.2208/kaigan.75.i_799
- A wall boundary treatment using analytical volume integrations in a particle method vol.121, pp.18, 2017, https://doi.org/10.1002/nme.6429