참고문헌
- Agrawal, R., Ieong, S., and Velu, R., Timing When to Buy, ACM Conference on Information and Knowledge Management (CIKM), 2011.
- Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I., Bergeron, A., Bouchard, N., Warde-Farley, D., and Bengio, Y., Theano : new features and speed improvements, NIPS 2012 deep learning workshop, 2012.
- Bayus, B., L., "The Consumer Durable Replacement Buyer", Journal of Marketing, Vol. 55, No. 1, 1991, pp. 42-51. https://doi.org/10.2307/1252202
- Bengio, Y., Simard, P., and Frasconi, P., "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, Vol. 5, No. 2, 1994, pp. 157-166. https://doi.org/10.1109/72.279181
- Chen, Y. L. and Huang, T. C. K., "Discovering fuzzy time-interval sequential patterns in sequence databases", IEEE Syst. Trans. Man Cybernet Part B, Vol. 35, No. 5, 2005, pp. 959-972. https://doi.org/10.1109/TSMCB.2005.847741
- Chiang, D. A., Lee, S. L., Chen, C. C., and Wang, M. H., "Mining interval sequential patterns", International Journal of Intelligent System, Vol. 20, No. 3, 2005, pp. 359-373. https://doi.org/10.1002/int.20070
- Glorot, X. and Bengio, Y., Understanding the difficulty of training deep feedforward neural networks, Proceedings of the International Conference on Artificial Intelligence and Statistics(AISTATS'10), 2010.
- Gould, B. W. and Dong, D., "The Decision of When to Buy a Frequently Purchased Good : A Multi-Period Probit Model", Journal of Agricultural and Resource Economics, Vol. 25, No. 2, 2000, pp. 636-652.
- Hinton, G. E., Osindero, S., and Teh, Y., "A fast learning algorithm for deep belief nets", Neural Computation, Vol. 18, 2006, pp. 1527-1554. https://doi.org/10.1162/neco.2006.18.7.1527
- Hu, Y. H., Huang, T. C., Yang, H. R., and Chen, Y. L., "On mining multi-time-interval sequential patterns", Data Knowledge Engineering, Vol. 68, No. 10, 2009, pp. 1112-1127. https://doi.org/10.1016/j.datak.2009.05.003
- Mulder, W. D., Bethard, S., and Moens, M.-F., "A survey on the application of recurrent neural networks to statistical language modeling", Computer Speech and Language, Vol. 30, No. 1, 2015, pp. 61-98. https://doi.org/10.1016/j.csl.2014.09.005
- Oh, J., Kim, S., Kim, J., and Yu, H., "When to recommend : A new issue on TV show recommendation", Information Sciences, Vol. 280, No. 1, 2014, pp. 261-274. https://doi.org/10.1016/j.ins.2014.05.003
- Rendle, S., Freudenthaler, C., and Schmidt-Thieme, L., Factorizing personalized markov chains for next-basket recommendation, In WWW Conference, 2010, pp. 811-820.
- Sato, M., Izumo, H., and Sonoda, T., Discount Sensitive Recommender System for Retail Business, Proceedings of the 3rd Workshop on Emotions and Personality in Personalized Systems, 2015, pp. 33-40.
- Wang, J., Sarwar, B., and Sundaresan, N., Utilizing related products for post-purchase recommendation in e-commerce, Proceedings of the fifth ACM conference on Recommender systems, 2011, pp. 329-332.
- Zhao, G., Lee, M. L., and Wynne, H., Utilizing Purchase Intervals in Latent Clusters for Product Recommendation, Proceedings of the 8th Workshop on Social Network Mining and Analysis (SNAKDD'14), 2014, pp. 1-9.
피인용 문헌
- Prediction of Repeat Customers on E-Commerce Platform Based on Blockchain vol.2020, pp.None, 2017, https://doi.org/10.1155/2020/8841437
- 머신러닝을 이용한 철광석 가격 예측에 대한 연구 vol.25, pp.2, 2017, https://doi.org/10.9723/jksiis.2020.25.2.057