
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 8, Aug. 2017 4006
Copyright ⓒ2017 KSII

Towards Designing Efficient Lightweight

Ciphers for Internet of Things

Muhammad Tausif1, Javed Ferzund2, Sohail Jabbar3* and Raheela Shahzadi4
1Department of Computer Science, COMSATS Institute of Information Technology

Vehari, Pakistan
[email: raotausif@ciitvehari.edu.pk]

2 Department of Computer Science, COMSATS Institute of Information Technology
Sahiwal, Pakistan

 [email: jferzund@ciitsahiwal.edu.pk]
3Department of Computer Science, National Textile University,

Faisalabad, Pakistan
 [email : sjabbar.research@gmail.com]

 4Department of Computer Science, COMSATS Institute of Information Technology
Sahiwal, Pakistan

[email: raheela@ciitsahiwal.edu.pk]
*Corresponding author: Sohail Jabbar

Received December 28, 2016; revised March 20, 2017; accepted April 23, 2017;

published August 31, 2017

Abstract

Internet of Things (IoT) will transform our daily life by making different aspects of life
smart like smart home, smart workplace, smart health and smart city etc. IoT is based on
network of physical objects equipped with sensors and actuators that can gather and share
data with other objects or humans. Secure communication is required for successful working
of IoT. In this paper, a total of 13 lightweight cryptographic algorithms are evaluated based
on their implementation results on 8-bit, 16-bit, and 32-bit microcontrollers and their
appropriateness is examined for resource-constrained scenarios like IoT. These algorithms
are analysed by dissecting them into their logical and structural elements. This paper tries to
investigate the relationships between the structural elements of an algorithm and its
performance. Association rule mining is used to find association patterns among the
constituent elements of the selected ciphers and their performance. Interesting results are
found on the type of element used to improve the cipher in terms of code size, RAM
requirement and execution time. This paper will serve as a guideline for cryptographic
designers to design improved ciphers for resource constrained environments like IoT.

Keywords: Internet of Things, Smart Objects, Information Security, Lightweight
Cryptography, Ciphers, Association Rule Mining

https://doi.org/10.3837/tiis.2017.08.014 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 8, August 2017 4007

1. Introduction

The Internet of Things (IoT) is a concept of universally identifiable physical things (or
objects), their integration with the Internet, and their demonstration in the digital or
simulated world. In order to construct the Internet of Things, a comprehensive range of
technologies are elaborated for example, Radio Frequency Identification (RFID) for device
and location recognition and Wireless Sensor Networks (WSN) for freely connecting with
intelligent systems and among each other. With the assistance of these technologies, we can
construct an environment where things talk to each other. Because of sensitivity of
applications, security in physical deployments of the Internet of Things is the key constraint
[1,2]. In the Internet of Things, the subsequent security facilities like Confidentiality, Data
Integrity, Source Integrity or Authentication, and Availability are needed [3]. Smart things
may be small computing devices, containing constrained resources such as low computation
capabilities, small size RAM and limited battery power. Communication with smart things in
resource constrained situation need consideration with these harsh limitations.
LightWeight Cryptography (LWC) is a very active research domain by targeting at the plan
of novel ciphers whose strong point is to fulfill the requirements set by the use of constrained
objects . The word “lightweight” talks about a family of cryptographic ciphers with smaller
code size, low computational power and low energy consumption. Because of these hard
resource limitations there is a growing need for security solutions based on lightweight
cryptography that are designed according to IoT requirements. Lightweight cryptography
emphasizes on efficient implementations of cryptographic algorithms and it is a
comparatively young scientific sub-field that is positioned at the intersection of computer
science, electrical engineering, and cryptography. All people working at the research area of
lightweight cryptography has to manage with the compromise between performance, security
and cost. Commonly, two out of the three design aims, can be easily improved, however at
the same time it is very difficult to boost all three design objectives, as shown in Fig. 1 taken
from [4].

Fig. 1. Trade-off among Security, Cost and Performance [4]

For resource constrained objects, the selection of the cryptographic algorithm is a key part
that can disturb performance[5]. When efficient energy consumption and low cost are harsh
requirements, computational power must essentially be reduced consequently [6, 7]. Using 8

4008 Tausif et al.: Towards Designing Efficient Lightweight Ciphers for Internet of Things

bit microcontrollers (such as AVR microcontrollers, which have restricted abilities in terms
of storage and computing power), it is needed that implemented algorithms must be kept
simple, having low footprint. This could result in lower energy consumption and faster
execution which might be important for battery powered objects [8, 9]. Even though
maximum symmetric ciphers have been established by concentrating on good software
executions, the placement of smart objects will lead to growing attention to those
cryptographic algorithms that will have efficient implementations for hardware in terms of
energy consumption and speed [10]. During this study we have tabulated the thorough
benchmarking results of 13 lightweight cryptographic algorithms, namely PRINCE, RC5
AES, Fantomas, Speck Piccolo, PRESENT HIGHT, L Block, LED, Robin, Simon, , and
TWINE. Our motivations for choosing these cryptographic algorithms are first, each of these
ciphers has a distinct property that makes it motivating for IoT applications. Secondly, they
cover extensive range of approaches and different design strategies. Our evaluation considers
one use case that is a simple challenge handshake authentication which covers the need of
authentication for applications such as access control or object identification in IoT.
In this article, lightweight cryptographic algorithms are evaluated with an analysis of their
software implementation results on 8-bit, 16-bit, and 32-bit microcontroller. This study
focusses on three parameters: binary code size, execution time and runtime RAM usage.
These parameters are investigated with respect to the structural elements of different
lightweight ciphers. Results of this study give novel understandings to the query of which
cipher is more suited to the IoT scenario. Association Rule Mining have been used to find
the associations among the constituent elements of different ciphers and the performance
parameters. Based on the results, interesting information has been inferred about cipher
behavior on different platforms under the same scenario. Finally, guidelines are formulated
for designing efficient lightweight ciphers.
The rest of the paper is organized as follows. Related work is presented in Section 2.
Performane ealuation and comparison of cryptographic algorithms is presented in Setion 3.
Results are discussed in Section 4 and finally paper is concluded in Setion 5.

2. Related Work
For wireless sensor networks (WSN) Law et al. present a survey on cryptographic
algorithms [11]. They consider properties like energy-efficiency and storage capacity of
different cryptographic algorithms including Twofish, MISTY1 Skipjack [12], RC5, RC6,
AES, KASUMI, MISTY1 and Camellia. In this work the consequence of examination
delivers us standard of picking cryptographic algorithm appropriate for wireless sensor
networks. Memory efficient cryptographic algorithms are necessary in a situation where
security is significant and energy efficient cryptographic algorithm has to be used in a
situation where availability of network is vital, since sensor hops whose consumption of
battery is more are no longer available in the network.
Karlof et al. [13], considered de-facto standard of security design for WSN, concluded that
RC5 and Skipjack are suggested cryptographic algorithms in a particular scenario of WSN.
Each candidate has their own characteristics security, memory and energy efficiency.
Consequently, if several nominees of cryptographic algorithm are practically applied, user
can select easily for according to the condition for wireless sensor networks.
Woo et al. consider another candidate HIGHT on Mica2 [9], designed to be suitable to
ubiquitous 8 bit devices for wireless sensor networks. They examine the performance
between Skipjack, RC5 and HIGHT cryptographic algorithm on TinySec. Finally, author

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 8, August 2017 4009

show performance evaluation on the basis of memory efficiency and power usage. The
author concluded that as compared with traditional ciphers on TinySec, HIGHT is suitable
candidate for ubiquitous devices.
 Swernendu et al. [14] has provided a survey of a number of current light weight
cryptographic algorithms. The author described with the fast developments in wireless
networks and low end devices such as Radio frequency identification tags, WSN nodes are
positioned in growing numbers every day. Such devices are used in several situations and
applications important to a constantly increasing requirement to deliver security. When
picking Cryptographic algorithms for resource constrained devices the implementation cost
should be considered. In order to fulfill these requirements, efficient and secure
authentication and encryption arrangements have to be established. In the resource
constrained environment symmetric key ciphers, particularly lightweight block ciphers still
play a significant part to deliver confidentiality.
Parbhat et al. [15] did a comparative examination of unlike symmetric-key lightweight
cryptographic algorithms such as PRINT, EPCBC, DESL PRESENT, KATAN, LED Puffin,
KLEIN, RECTANGLE, LBLOCK and TWINE. It focuses on the tradeoffs between
throughput, area and cycle per block of unlike algorithms. Even though the cost is little, the
symmetric-key lightweight algorithms are required to be better in numerous directions like
Gate Equivalents (throughput and area) and number of cycles per block.
Katagi et al. [16] described that lightweight cryptography is the back bone to the security of
smart objects networks because of its smaller footprint and efficiency. Authors believe that
lightweight cryptography should be deliberated to be executed in the networks. Specifically,
lightweight block ciphers are used now days. They presented a summary of the state of the
art technology and normalization position of lightweight cryptography, which can be
executed efficiently in resource constrained devices. This technology allows protected and
efficient communication among smart objects.

3. Light Weight Cryptographic Algorithms
Our objective is to know the link between the cryptographic algorithm structure and the
performance result on the particular platforms and devices in the Internet of Things scenario.
We have carefully chosen lightweight cryptographic algorithms demonstrating an enormous
variety of design results from the two big families of Substitution Permutation Networks
(SPN) and Feistel Networks (FN).
In the following sub sections, we shortly describe the selected lightweight ciphers. A
summary of the selected ciphers is presented in Table 1.

3.1 AES-128
The AES is the present day lightweight block cipher [17]. AES was designed by V. Rijmen
in 1997 and selected as a standard in 2000. It is the widely used cryptographic algorithm.
The AES is based on SPN structure. AES block size is 128 bits under three different key
sizes 128, 192, or 256 bits. We focus here on the case of AES 128 bit block size under a key
of length 128 bits. This Advance encryption standard version consists of 10 rounds that
reiterate four basic steps:

1- Sub Bytes
2- Shift Rows
3- Mix Columns
4- Add Round Key on blocks seen as 4×4 byte matrices

4010 Tausif et al.: Towards Designing Efficient Lightweight Ciphers for Internet of Things

3.2 Fantomas
Fantomas is a 128 bits lightweight cryptographic algorithm. It is similar to Robin. It is based
on LS-design. In LS-design linear layer includes in the parallel applications of so-called L
boxes. The S box configuration makes simpler the operation of masking. Master key is
added at every round [18]. There is no key schedule.

3.3 HIGHT
HIGHT has been good candidate for light weight cryptography by seeing low resource
hardware performance [19]. HIGHT practices very simple arithmetic and logic operations
such as addition and exclusive OR and bitwise rotation. HIGHT has 64-bit block length and
128-bit key length. HIGHT was considered to be suitable for application in the low resource
atmosphere such as Radio Frequency Identification tag or small universal devices. HIGHT
comprises of 4 key steps:

1. Key schedule
2. Initial transformation
3. 32 iterative round operations
4. Final transformation

3.4 L Block
L block is based on Feistel Network structure. It consists of 32 rounds. The Feistel function
consists of XOR with the round sub key, substitution layer of 8 different S-boxes and a
permutation of 8 nibbles. Furthermore, the content of one of the branches is rotated by 8 bits
in each round. The design trade-offs between security and performance led not only to
hardware efficiency but also software efficiency [20]. The best cryptanalysis of this primitive
is an impossible differential attack on 23 out of 32 rounds [21].

3.5 LED (Light Encryption Device)
LED (Light Encryption Device) [22] has provided sound performance background for
software aspects. LED has 64 bits block size with four different key sizes 64 bits, 80 bits, 96
bits, and 128 bits. Light Encryption Device algorithm practices PRESENT cipher s-box. It
consists of following steps:

1. Add Round Key (Key XOR with cipher.)
2. Add Constants-Round (constants are combined with cipher using bitwise XOR).
3. Sub Cells- (Each nibble is replaced by the generated nibble using PRESENT s-box.)
4. Shift Rows Serial

3.6 Piccolo
Piccolo is a comprehensive Feistel construction with four 16 bit branches. Piccolo uses a
byte permutation among rounds to increase diffusion. The Feistel function contains two S-
box layers separated by a diffusion matrix [23]. The superlative attack on Piccolo is a Meet
in the Middle attack described by its creators in the article in which cipher is introduced.

3.7 PRESENT Cipher
PRESENT cipher focused on the hardware performance [24]. It has been considered to be
efficient lightweight cryptographic algorithm in hardware. It functions on 64 bit block size
and with the key size of 80 bits. It has 32 rounds of iteration. PRESENT is an example of
SPN structure. One round contain following steps:

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 8, August 2017 4011

1. Add Round Key: Key XOR with cipher.
2. Substitution: Uses 4 bits S-box.
3. Permutation: Uses P-layer.

S-box used in PRESENT cipher is:
S(x) ={C, 5, 6, B, 9, 0, A, D, 3, E, F, 8, 4, 7, 1, 2}

 Table 1. Complete Description of Building Elements of Ciphers

CIPHER
Key
Size

Block
Size Rounds Structure S-Box Round Function Key Scheduling

Speck 64 96 26 FEISTEL
Not
based

XOR, Left, Right,
Shift

Based on Round
Function

Simon 64 96 42 FEISTEL
Not
based

XOR, AND,
Circular Shift

Based on Round
Function

AES 128 128 10 SPN
4*4 s-
box

Shift Rows, Mix
Column, add Keys Based on S-Box

RC5 64 128 20 FEISTEL
8 bit s-
box

XOR, Left Rotation,
Right Rotation

Use Magic
Constant

Fantomas 128 128 12 SPN
Bit slice
S-Box N/A

Depend on Master
Key

Robin 128 128 16 FEISTEL
Bit slice
S-Box N/A

Depend on Master
Key

L block 64 80 32 FEISTEL
4*4 s-
box

XOR, addition
Subtraction

Based on Round
Function

HIGHT 64 128 32 FEISTEL not based XOR, Add, Sub
Key Whitening,
Sub Keys

PRESENT 64 80 31 SPN
4*4 s-
box XOR, Add Key Register

Piccolo 64 80 25 FEISTEL 2 S-box NOR,XOR,XNOR key Whitening,

Twine 64 80 36 FEISTEL
4*4 s-
box XOR, modolu2 add GFS

PRINCE 64 128 12 SPN
4 bit S-
box AND,XOR,XNOR Key Whitening

LED 64 80 48 SPN
4*4 s-
box

Shift Rows, Mix
Column, Sub Cells Based on S-Box

3.8 PRINCE
PRINCE uses an FX construction. It has SPN structure where the key whitening is used in
first two sub keys, whereas for the 12 rounds third sub key is the 64 bit key called PRINCE
core. PRINCE applies distinctive stuff called α-reflection [25]. On 10 out of 12 rounds the
best attack on this cipher is a multiple differential attack [26]. PRINCE is a good candidate
for light weight cryptography by seeing low resource hardware performance.

3.9 RC5
RC5 is a Feistel network Structure and it uses data dependent rotations [27]. However RC5
was intended before lightweight cipher strategy became general. It is clearly lightweight as
confirmed by its extensive use in WSN. The block, number of rounds and key size can be
selected without restrictions, so we study RC5 32/20/16 i.e. a type of RC5 functioning on

4012 Tausif et al.: Towards Designing Efficient Lightweight Ciphers for Internet of Things

two 32 bit words, using 20 rounds and a 16 byte key.

3.10 Robin
Robin is a 128-bits block cipher. Robin is comparable to Fantomas. The look-up table
created diffusion layers and the construction of the S boxes makes the robin lightweight
cryptographic algorithm good nominee for software applications [18].

3.11 Simon
Simon uses a Feistel structure. It consists of simple arithmetic and logic operations with a
simple round function left circular shifts, bitwise XOR and bitwise AND. It has good
performance in hardware implementations, but accomplishes decent consequences in
software as well [28].

3.12 Speck
Speck is planned to deliver admirable outcomes in both software and hardware, but is
adjusted for software execution on embedded devices. Its design structure is Feistel Network.
It consists of simple arithmetic and logic operations with a simple round function left
circular shift bitwise XOR and bitwise AND [28].

3.13 TWINE
With 16 branches twine is a comprehensive Feistel Network structure. The major step
contains key adding and a 4 bit S box. With considerable advanced diffusion, the linear layer
is a nibble permutation. It has good performance in hardware in terms of small foot print
implementations, but accomplishes decent consequences in software as well in terms of
RAM consumption [29].

4. Experimental Results and Discussion
In this section, first we present the performance analysis of implementing the lightweight
cryptographic algorithm on three platforms: AVR microcontroller, MSP microcontroller and
ARM microcontroller. Specification of these microcontrollers are given in Table 2. The
analysis is based on three factors: code size, RAM foot print, and execution time. Secondly,
we present the results of Association Rule Mining applied on constituent elements of
lightweight cryptographic algorithms.

 Table 2. Specification of Targeted Devices

Device Flash Memory (KB) SRAM (KB)

8-bit AVR 128 4

16-bit MSP 48 10

32-bit ARM 512 96

4.1 Scenario and Performance Metrics
Test handshake authentication covers the requirement of confirmation in the Internet of
Things. The scenario considers an authentication protocol, where the lightweight cipher is

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 8, August 2017 4013

used in CTR mode of operation to encode 128 bits of information. Cipher round keys are
kept in Flash memory while the master key is kept into the device. The information that has
to be encoded is kept in random access memory along with the counter value. To decrease
the random access memory usage, the process to encode the information is done in place.
This situation is appropriate for actual constrained situations where random access memory
usage and binary code size have to be very low, although the execution time should be
sufficiently fast to avoid reducing the device’s battery. A detailed performance comparison
of the selected ciphers on three different platforms is presented in Table 3.

4.1.1 Code Size
The code size is measured in bytes and corresponds to the program footprint which is stored
in the flash memory of the target device. The code size for each cipher implementation is
computed using the size tool on object files generated by the compiler.

Table 3. Implementation Results of Performance Metrics on All Three Platforms

Cipher

Code Size RAM Execution Time

ARM MSP AVR ARM

MSP

AVR ARM

MSP

AVR

 [Bytes] [Bytes] [Bytes] [Bytes] [Bytes] [Bytes] [Cycles] [Cycles] [Cycles]

Speck 1628 618 666 196 58 54 3763 6054 3251

Simon 2156 732 772 216 72 62 4564 10930 5341

AES 1056 1438 1410 152 80 79 11623 4190 3175

RC5 1240 700 1712 172 54 58 10236 20543 8449

Fantomas 2260 1920 2496 216 78 108 41758 3646 5919

Robin 920 1942 2530 168 80 108 175092 4935 7813

L block 4124 976 1440 248 58 64 14365 18988 11183

HIGHT 988 982 1202 184 60 59 18418 23016 11335

PRESENT 676 1244 1416 128 58 54 1751 12226 15245

Piccolo 2160 966 1298 216 70 70 6195 21448 25745

Twine 636 1922 1528 128 136 64 1930 23938 21701

PRINCE 560 3418 4420 120 70 68 925 25340 17271

LED 1228 4422 2602 164 104 91 20531 148334 143317

4014 Tausif et al.: Towards Designing Efficient Lightweight Ciphers for Internet of Things

4.1.2 RAM

The RAM consumption is divided into stack consumption and data consumption. The size of
the data stored in the RAM is computed using the implementation information file and the
size tool. It includes scenario specific RAM data such as data to encrypt keys, round keys or
initialization vectors. The stack consumption is measured using gdb.

4.1.3 Execution Time
The execution time is expressed in number of processor cycles spent executing a set of
instructions. The number of processor cycles is given by the number of cycles of the
processor’s clock. The metric is extracted for the four basic operations performed by a block
cipher. To measure the execution time on AVR, cycle accurate simulator Avrora is used [30].
For MSP, the cycle accurate simulator MSP Debug is used.

4.2 Association Rule Mining
After having a performance analysis, we tried to investigate the relationships between the
performance parameters and the constituent elements of the lightweight ciphers. For this
purpose, we used the association rule mining. It is a popular and well researched method for
discovering interesting relations between variables in large databases. It is intended to
identify strong rules discovered in databases using different measures of interestingness. We
used Weka tool for extracting the association rules. To apply the association rule mining, we
divided the data into two groups: constituent elements of ciphers (key size, block, S box,
round function, rounds, key scheduling) and performance parameters (code size, RAM size,
execution time). We labeled the data before applying association rule mining. The labels
used are presented in Table 4.
The values of key size block size, number of rounds, round function, S-box table and key
scheduling vary in different lightweight cryptographic algorithms. So, it would be interesting
to know which value of these parameters results in good performance of lightweight ciphers.

 Table 4. Labels used for Different Parameters

Parameter Value Label

Key Size
64 bit A

128 bit B

Block Size

96 bit A

128 bit B

80 bit C

S box

Not Based A

4*4 B

8 bit C

Bit Slice D

2 S box E

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 8, August 2017 4015

Round Function

XOR, LEFT, RIGHT SHIFT A

SHIFT ROW, MIX COLOUMS, ADD CONS B

XOR, ADD, SUB C

XOR, XNOR D

Number of Rounds

10 to 15 A

15 to 20 B

20 to 30 C

31 to 36 D

36 to 40 E

Above=F F

Structure
Fiestal A

SPN B

Key Scheduling

Based on Round Function A

Based on S Box B

Use Magic Constant C

Depend on Master Key D

Key Whiting E

Key Register F

GFS G

Code Size

500 to 1000 bytes S

1000 to 1500 bytes M

1500 to 2200 bytes L

Above VL

RAM Size

120 to 160 bytes S

160 to 200 bytes M

200 to 300 bytes L

300 above bytes VL

Execution Time

900 to 2500 cycles S

2500 to 5000 cycles M

5000 to 10000 cycles L

10000 above cycles VL

4016 Tausif et al.: Towards Designing Efficient Lightweight Ciphers for Internet of Things

4.2.1 Rules for Code Size
For code size the extracted rules are presented below:

 Rules to keep the code size small on AVR

 Rules to keep the code size small on MSP

 Rules to keep the code size small on ARM

We have found that to keep the code size of a cipher small, four elements are important
including block size, S-box, round function and key scheduling. Although the elements are
used in different associations but their type is almost same. For example, on all the three
platforms block size is common that is “96 bits” and round function also common that is
using simple arithmetic functions “XOR, Left Shift, Right Shift”. The similarities are more
evident in Table 5, where the extracted rules are presented in tabular form.

1. S-Box=A Round Function=A ==> CODE SIZE=S

2. Block Size=A Round Function=A ==> CODE SIZE=S

3. Round Function=A Key Scheduling=A ==> CODE SIZE=S

4. Block Size=A Key Scheduling=A ==> CODE SIZE=S

5. S-Box=A Round Function=A ==> CODE SIZE=S

1. Key Size=B Structure=A ==> CODE SIZE=S

2. Key Size=B Round Function=A ==> CODE SIZE=S

3. Block Size=A Structure=A ==> CODE SIZE=S

4. .Block Size=A S-Box=A ==> CODE SIZE=S

5. Structure=A Round Function=A ==> CODE SIZE=S

1. Key Size=B Structure=A ==> CODE SIZE=S

2. Key Size=B Round Function=A ==> CODE SIZE=S

3. Block Size=A Structure=A ==> CODE SIZE=S

4. Block Size=A S-Box=A ==> CODE SIZE=S

5. Structure=A Round Function=A ==> CODE SIZE=S

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 8, August 2017 4017

 Table 5. Summary of Rules to keep the code size small

S BOX and Key Scheduling also have same type by using S box “Not based” and Key
Scheduling is “based on round function”. On AVR platform key size is not found in the
extracted rules for code size. However, for MSP and ARM key size is same for keeping code
size small that is “128 bits”. So, it is concluded from the extracted association rules that
when block size is “96 bits”, round function is “XOR, Left Shift, Right Shift”, S box is “Not
based”, key Scheduling is “based on round function”, and block size is “96”, the resultant
cipher will have small code size that can be used for resource constrained environment.

4.2.2 Rules for RAM Size
For RAM foot print, the extracted rules are presented below:

1. Rounds=D ==> RAM=S

2. Round Function=C ==> RAM=S

3. Key Size=A Rounds=D ==> RAM=S

4. Key Size=A Round Function=C ==> RAM=S

5. Rounds=D Round Function=C ==> RAM=S
Rules to keep the RAM size small on AVR

1. Block Size=B ==> RAM=S

2. Key Size=A Block Size=B ==> RAM=S

Platform
Key
Size

Block
Size Structure S-Box

Round
Function

Key
Scheduling

Code
Size

AVR
CODE

 A A S
 A A S
 A A S
 A A S

 A A S

MSP
CODE

B A S
B A S
 A A S
 A A S

 A A S

ARM
CODE

B A S
B A S
 A A S
 A A S

 A A S

4018 Tausif et al.: Towards Designing Efficient Lightweight Ciphers for Internet of Things

3. Block Size=B Structure=A ==> RAM=S

4. Key Size=B 3 ==> RAM=S

5. Rounds=A ==> RAM=S

Rules to keep the RAM size small on MSP

1. S-Box=A ==> RAM=S

2. Round Function=A ==> RAM=S

3. Structure=A S-Box=A ==> RAM=S

4. Structure=A Round Function=A ==> RAM=S

5. Block Size=A ==> RAM=S

 Rules to keep the RAM size small on ARM

There are some variations with respect to different platforms. However, key size, block size,
no of rounds and round function are important elements for keeping RAM foot print small
When we look at the Association Rule Mining results, we find that to keep the Ram size of a
cipher small, four elements are important including key size, Block size, no of rounds and
round function. Although the elements are used in different associations but their type is
almost same as evident from Table 6, where the extracted rules are presented in tabular form.

 Table 6. Summary of rules on all platforms to keep the RAM size small

Platform
Key
Size

Block
Size Rounds Structure S-Box

Round
Function

RAM
Size

AVR
RAM

 D S
 C S
A D S
A C S

 D C S

MSP
RAM

 B S
A B S
 B A S
B S

 A S

ARM
RAM

 A S
 A S
 A A S
 A A S

A S

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 8, August 2017 4019

4.2.3 Rules for Execution Time
For Execution time, the extracted rules are presented below:

1. Key Scheduling=D ==> EXE TIME=M

2. Block Size=B S-Box=D ==> EXE TIME=M

3. S-Box=D ==> EXE TIME=M

Rules to keep the Execution Time Medium on AVR

1. Block Size=B Structure=B ==> EXE TIME=S

2. Key Scheduling=D ==> EXE TIME=S

3. S-Box=D ==> EXE TIME=S

Rules to keep the Execution Time Small on MSP

1. Structure=A S-Box=A Round Function=A Key Scheduling=A ==>

Execution Time=S

2. Block Size=A Structure=A S-Box=A Round Function=A Key

Scheduling=A ==> Execution Time=S

3. Block Size=A Structure=A Key Scheduling=A ==> Execution Time=S

4. Block Size=A S-Box=A Round Function=A ==> Execution Time=S

5. S-Box=A Round Function=A Key Scheduling=A ==> Execution

Time=S

Rules to keep the Execution Time Small on ARM

There are similarities between the AVR and MSP platform. However, on ARM platform
different values are identified. To keep the execution time low, important elements are: block
size, S box, round function, structure and key scheduling.In case of AVR and MSP S box
“Bit Slice” is important while in case of ARM S box “not based” is important, as can be seen
above. Similarly, for AVR and MSP block size “128 bits” is important whereas for ARM
block size “64 bits” is important to keep the execution time low. On all the three platforms
key size “64 Bits”, no of rounds “31 to 36”, block size “128 bits” and structure “Fiestal” are
common constituent elements. Although round function may vary a little bit when platform
has changed from AVR 8 bit to ARM 32 bit. In case of AVR round function “XOR, ADD,
SUB” is important while in case of ARM “XOR, LEFT, RIGHT shift” is vital as evident
from Table 7.

4020 Tausif et al.: Towards Designing Efficient Lightweight Ciphers for Internet of Things

 Table 7. Summary of rules on all platforms to keep the EXE TIME small

Platform
Block
Size Structure S-Box

Round
Function

Key
Scheduling

EXE
Time

AVR EXE
TIME

 D M
B D M

 D M
MSP EXE
TIME

B B S
 D S

 D S
ARM EXE
TIME

 A A A A S
A A A A A S
A A A S
A A A S
 A A A S

4.3 Recommendations

Keeping in view all the rules and findings for each element, following recommendations are
made:

• Key Size: not important for execution time. 128 bits can be used to keep code size
small. 64 bits can be used to keep RAM foot print small.

• Block Size: 96 bits can be used to keep code size small and keep execution time low
on ARM. 128 bits can be used to keep RAM foot print small and keep execution
time low on AVR and MSP.

• Rounds: it is not found significant for execution time and code size. 31-36 can be
used to keep RAM foot print small.

• Structure: Fiestal can be used to keep code size, RAM foot print small and
execution time low.

• S-Box: Not based can be used to keep code size, RAM foot print small and
execution time low. For AVR and MSP, Bit Slice can be used to keep execution time
low.

• Round Function: “XOR, LEFT, RIGHT SHIFT” can be used to keep code size,
RAM foot print small and execution time low. “XOR, ADD, SUB” can be used on
AVR to keep RAM foot print small.

• Key Scheduling: not important for RAM foot print. “Based on round function” can
be used for keeping code size small. Same value can be used to keep execution time
low on ARM, whereas “depend on master key” can be used to keep execution time
low on AVR and MSP.

5. Conclusion
In this paper, we presented an evaluation of 13 light weight block ciphers used for secure
communication in Internet of Things. We compared and ranked the ciphers based on three
metrics: code size, RAM foot print and execution time. We analyzed the performance of
these ciphers on three different platforms: 8 bit, 16 bit and 32 bit. We further dissected these

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 8, August 2017 4021

ciphers into their constituent elements and investigated the role of these elements in the
performance of ciphers. We used association rule mining to find associations among the
constituent elements. Based on the results, we come up with few guidelines regarding the
design of lightweight ciphers. Designer must always remember the algorithm prerequisites to
be implemented into the devices. So, intention must be to consume less device resource e.g.
memory (RAM), code size, execution time etc. The S-box have to be small generally (4 × 4)
bits for compact operation. Simultaneously, it must deliver compulsory non-linearity to the
algorithms. Key schedule have to be easy so that it take small space, hence the recently
planned cipher keep the keys fixed. As the algorithms are straightly implemented into the
device, therefor no need for re-keying. The permutation has to be designed in such a way
that it attains optimum stability among mixing of bits and areas. The designer must attempt
to accomplish an optimum balance amid the different parameters of cost, security and
performance. In short, this research work aimed to provide basement to improve the cipher
in several ways like code size, size of memory (RAM Requirement), and execution time.
This paper will serve as a guideline for cryptographic designers to design improved ciphers
for resource constrained environment like Internet of Things.

References
[1] Yu, Hong, Jingsha He, Ting Zhang, Peng Xiao, and Yuqiang Zhang, "Enabling end-to-end secure

communication between wireless sensor networks and the Internet," World Wide Web, vol. 16, no.
4, pp.515-540, 2013 Article (CrossRef Link).

 [2] Garcia-Morchon, Oscar, Sye Loong Keoh, Sandeep Kumar, Pedro Moreno-Sanchez, Francisco
Vidal-Meca, and Jan Henrik Ziegeldorf, "Securing the IP-based internet of things with HIP and
DTLS,” in Proc. of the 6th ACM Conference on Security and Privacy in Wireless and Mobile
Networks, ACM. pp. 119-124. 2013. Article (CrossRef Link).

 [3] López, Javier, and Jianying Zhou, “eds,” Wireless sensor network security, Vol. 1. Ios Press, 2008.
Article (CrossRef Link).

 [4] Bhattasali, Tapalina, "LICRYPT: Lightweight Cryptography Technique for Securing Smart
Objects in Internet of Things Environment,” CSI Communications 2013. Article (CrossRef Link).

 [5] Eisenbarth, Thomas, Sandeep Kumar, Christof Paar, Axel Poschmann, and Leif Uhsadel, "A
survey of lightweight-cryptography implementations,” IEEE Design & Test of Computers, vol. 24,
no. 6 pp. 522-533. 2007 Article (CrossRef Link).

 [6] Poschmann, Axel York, "Lightweight cryptography: cryptographic engineering for a pervasive
world,” PH. D. THESIS, 2009. Article (CrossRef Link).

 [7] Tausif, Muhammad, Javed Ferzund, and Sohail Jabbar, "Emergence of Internet of Things in
Current Technological Era,” JOURNAL OF PLATFORM TECHNOLOGY, vol. 2, no. 3, pp. 19-34,
2014. Article (CrossRef Link).

 [8] Zhang, Xueying, Howard M. Heys, and Cheng Li, "Energy efficiency of symmetric key
cryptographic algorithms in wireless sensor networks,” in Proc. of Communications (QBSC), 2010
25th Biennial Symposium on, pp. 168-172. 2010. Article (CrossRef Link).

 [9] Koo, Woo Kwon, Hwaseong Lee, Yong Ho Kim, and Dong Hoon Lee, "Implementation and
analysis of new lightweight cryptographic algorithm suitable for wireless sensor networks,” in
Proc. of Information Security and Assurance, pp. 73-76., 2008. Article (CrossRef Link).

 [10] Kerckhof, Stéphanie, François Durvaux, Cédric Hocquet, David Bol, and François-Xavier
Standaert, "Towards green cryptography: a comparison of lightweight ciphers from the energy
viewpoint,” in Proc. of International Workshop on Cryptographic Hardware and Embedded

https://doi.org/10.1007/s11280-012-0194-0
https://doi.org/10.1145/2462096.2462117
http://wsn-group.weebly.com/uploads/2/7/3/9/273942/wireless_sensor_network_security.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.362.3779&rep=rep1&type=pdf
https://doi.org/10.1109/MDT.2007.178
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.182.1450%20
http://jpt.ictps.org/contents/2-3
https://doi.org/10.1109/bsc.2010.5472979
https://doi.org/10.1109/isa.2008.53

4022 Tausif et al.: Towards Designing Efficient Lightweight Ciphers for Internet of Things

Systems, Springer Berlin Heidelberg, pp. 390-407, 2012. Article (CrossRef Link).
 [11] Law, Yee Wei, Jeroen Doumen, and Pieter Hartel, "Benchmarking block ciphers for wireless

sensor networks,” in Proc. of Mobile Ad-hoc and Sensor Systems, IEEE International
Conference on, pp. 447-456, 2004. Article (CrossRef Link).

 [12] Skipjack, N. I. S. T., “KEA algorithm specifications,” 1998. Article (CrossRef Link).
 [13] Karlof, Chris, Naveen Sastry, and David Wagner, "TinySec: a link layer security architecture for

wireless sensor networks,” in Proc. of the 2nd International Conference on Embedded networked
Sensor Systems, pp. 162-175, 2004. Article (CrossRef Link).

 [14] Jana, Swarnendu, Jaydeb Bhaumik and Manas Kumar Maiti, "Survey on lightweight block
cipher,” International Journal of Soft Computing and Engineering, vol. 3, pp. 183-187, 2013.

 Article (CrossRef Link).
 [15] Kushwaha, Prabhat Kumar, M. P. Singh, and Prabhat Kumar, "A Survey on Lightweight Block

Ciphers,” International Journal of Computer Applications, vol. 96, no. 17 , 2014.
 Article (CrossRef Link).
 [16] Katagi, Masanobu, and Shiho Moriai, "Lightweight cryptography for the internet of things,” Sony

Corporation, pp.7-10, 2008. Article (CrossRef Link).
 [17] Daemen, Joan, and Vincent Rijmen, “The design of Rijndael: AES-the advanced encryption

standard,” Springer Science & Business Media, 2013. Article (CrossRef Link).
 [18] Grosso, Vincent, Gaëtan Leurent, François-Xavier Standaert, and Kerem Varıcı. "LS-designs:

Bitslice encryption for efficient masked software implementations,” in Proc. of International
Workshop on Fast Software Encryption, Springer Berlin Heidelberg, pp. 18-37, 2014.
Article (CrossRef Link).

 [19] Hong, Deukjo, Jaechul Sung, Seokhie Hong, Jongin Lim, Sangjin Lee, Bon-Seok Koo,
Changhoon Lee et al., "HIGHT: A new block cipher suitable for low-resource device,” in Proc.
of International Workshop on Cryptographic Hardware and Embedded Systems, Springer Berlin
Heidelberg, pp. 46-59, 2006. Article (CrossRef Link).

 [20] Wu, Wenling, and Lei Zhang, "LBlock: a lightweight block cipher,” in Proc. of International
Conference on Applied Cryptography and Network Security, Springer Berlin Heidelberg, pp.
327-344., 2011. Article (CrossRef Link).

 [21] Boura, Christina, María Naya-Plasencia, and Valentin Suder, "Scrutinizing and improving
impossible differential attacks: applications to CLEFIA, Camellia, LBlock and Simon,” in Proc.
of International Conference on the Theory and Application of Cryptology and Information
Security, Springer Berlin Heidelberg, pp. 179-199. 2014. Article (CrossRef Link)

 [22] Patil, Abhijit, Gaurav Bansod, and Narayan Pisharoty, "Hybrid Lightweight and Robust
Encryption Design for Security in IoT,” International Journal of Security and Its Applications,
vol. 9, no. 12 pp. 85-98, 2015. Article (CrossRef Link).

 [23] Shibutani, Kyoji, Takanori Isobe, Harunaga Hiwatari, Atsushi Mitsuda, Toru Akishita, and Taizo
Shirai, "Piccolo: an ultra-lightweight blockcipher,” in Proc. of International Workshop on
Cryptographic Hardware and Embedded Systems, Springer Berlin Heidelberg, pp. 342-357,
2011. Article (CrossRef Link).

 [24] Bogdanov, Andrey, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel Poschmann, Matthew
JB Robshaw, Yannick Seurin, and Charlotte Vikkelsoe, "PRESENT: An ultra-lightweight block
cipher,” in Proc. of International Workshop on Cryptographic Hardware and Embedded
Systems, Springer Berlin Heidelberg, pp. 450-466, 2007. Article (CrossRef Link).

 [25] Borghoff, Julia, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Knezevic, Lars R.
Knudsen, Gregor Leander et al., "PRINCE–a low-latency block cipher for pervasive computing
applications,” in Proc. of International Conference on the Theory and Application of Cryptology

https://doi.org/10.1007/978-3-642-33027-8_23
https://doi.org/10.1109/mahss.2004.1392185
http://csrc.nist.gov/groups/ST/toolkit/documents/skipjack/skipjack.pdf
https://doi.org/10.1145/1031495.1031515
http://www.acsij.org/acsij/article/view/529
http://crawl.prod.proquest.com.s3.amazonaws.com/fpcache/d7900b847378b5199edd752f296003af.pdf?AWSAccessKeyId=AKIAJF7V7KNV2KKY2NUQ&Expires=1493144475&Signature=0rJdf5jhA0323yJwjU%2B1OHuilc8%3D
https://pdfs.semanticscholar.org/9595/b5b8db9777d5795625886418d38864f78bb3.pdf
https://pdfs.semanticscholar.org/d440/7ce703cc42e2578a09f9352e686fc47775da.pdf
https://hal.inria.fr/hal-01093491/document
https://doi.org/10.1007/11894063_4
https://doi.org/10.1007/978-3-642-21554-4_19
https://doi.org/10.1007/978-3-662-45611-8_10
https://www.researchgate.net/profile/Dr_Gaurav_Bansod/publication/297740818_Hybrid_Lightweight_and_Robust_Encryption_Design_for_Security_in_IoT/links/56f0c90308ae584badc93d3c.pdf
https://doi.org/10.1007/978-3-642-23951-9_23wq
http://yannickseurin.free.fr/pubs/Bogdanov_et_al07_CHES.pdf

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 8, August 2017 4023

and Information Security, Springer Berlin Heidelberg, pp. 208-225. 2012.
Article (CrossRef Link).

 [26] Canteaut, Anne, Thomas Fuhr, Henri Gilbert, María Naya-Plasencia, and Jean-René Reinhard,
"Multiple differential cryptanalysis of round-reduced PRINCE,” in Proc. of International
Workshop on Fast Software Encryption, Springer Berlin Heidelberg, pp. 591-610, 2014.
Article (CrossRef Link).

 [27] Rivest, Ronald L, "The RC5 encryption algorithm,” in Proc. of International Workshop on Fast
Software Encryption, Springer Berlin Heidelberg , pp. 86-96, 1994. Article (CrossRef Link).

 [28] Beaulieu, Ray, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks, and
LouisWingers, "The SIMON and SPECK lightweight block ciphers,” in Proc. of Proceedings of
the 52nd Annual Design Automation Conference, p. 175. 2015. Article (CrossRef Link).

 [29] Suzaki, Tomoyasu, Kazuhiko Minematsu, Sumio Morioka, and Eita Kobayashi, "Twine: A
lightweight, versatile block cipher,” in Proc. of ECRYPT Workshop on Lightweight
Cryptography, pp. 146-169. 2011. Article (CrossRef Link).

 [30] Dinu, Daniel, Yann Le Corre, Dmitry Khovratovich, Léo Perrin, Johann Großschädl, and Alex
Biryukov, "Triathlon of Lightweight Block Ciphers for the Internet of Things,” IACR Cryptology
ePrint Archive, pp. 209, 2015. Article (CrossRef Link).

https://doi.org/10.1007/978-3-642-34961-4_14
http://eprint.iacr.org/2014/089.pdf
http://www.engr.uconn.edu/%7Ezshi/course/cse268f2004/rc5.pdf
https://doi.org/10.1145/2744769.2747946
http://www.nec.com/en/global/rd/crl/code/symenc/images/twine_LC11.pdf
https://eprint.iacr.org/2015/209.pdf

4024 Tausif et al.: Towards Designing Efficient Lightweight Ciphers for Internet of Things

Muhammad Tausif is currently working as Lecturer with the department of
Computer Sciences COMSATS Institute of Information Technology (CIIT), Vehari,
Pakistan where he teaches course on Computer Sciences and Software Engineering, He
has completed his MS degree in Computer Sciences from COMSATS Institute of
Information Technology, Sahiwal, Pakistan in 2016. He received his B.sc degree in
Computer Engineering from Bahauddin Zakariya University, Multan, Pakistan in 2011.
His main research interests include Internet of Things and sensor networks. . He has
published one international journal papers. He is also supervised many Final year
projects in different domains of computer sciences. He has led different research and
development projects in COMSATS Institute of information Technology Vehari.

Javed Ferzund is an associate professor at Department of Computer Science,
COMSATS Institute of Information Technology, Sahiwal, where he served as Head of
Department from 2013-2015. He received PhD degree from Graz University of
Technology, Austria in 2009. His main research interests include Big Data Analytics,
Internet of Things and Machine Learning. Particularly, he is interested in applications of
IoT and Big Data in the Agro-Informatics and Bioinformatics fields. Currently, he is
leading the Big Data Analytics Research Group at COMSATS Institute Sahiwal.

Sohail Jabbar is an Assistant Professor at Department of Computer Science, National
Textile University, Faisalabad, Pakistan. He has been Post-Doctorate Researcher at
Network Lab, Kyungpook National University, Daegu, South Korea. He also served as
Assistant Professor with the Department of Computer Science, COMSATS Institute of
Information Technology (CIIT), Sahiwal and headed Networks and Communication
Research Group there. He received many awards and honors from Higher Education
Commission of Pakistan, Bahria University, CIIT, and the Korean Government. He
received the Research Productivity Award from CIIT in 2014 and 2015. He has been
engaged in many National and International Level Projects. His research work is
published in various renowned journals and magazines of IEEE, Springer, Elsevier,
MDPI, Old City Publication and Hindawi, and conference proceedings of IEEE and
ACM. He has been the reviewer for leading journals (ACM TOSN, JoS, MTAP,
AHSWN, ATECS, among many) and conferences (C-CODE 2017, ACM SAC 2016,
ICACT 2016, among others). He is currently engaged as TPC member chair in many
conferences. He is guest editor of Sis in Future Generation Computer Systems
(Elsevier), Peer-to-Peer networking and Applications (Springer), Journal of Information
and Processing System (KIPS), Cyber Physical System (Taylor & Francis). His research
interests include Internet of Things, Wireless Sensor Networks and Software Defined
Networking.

Raheela Shahzadi is currently working as Lecturer in department of Computer
Science, COMSATS Institute of Information Technology, Sahiwal, Pakistan. She has
completed her MS Degree in Computer Science from COMSATS Institute of
Information Technology, Sahiwal, Pakistan in 2015 with Distinction. She has completed
her bachelor degree COMSATS Institute of Information Technology, Sahiwal, Pakistan
in 2013 with Distinction. She has two and half year teaching experience at COMSATS
Institute of information Technology, Sahiwal, Pakistan. She has published one
international conference article. Her research interests include Data mining, internet of
things (IoT), wireless sensor network (WSN), expert system (ES) and digital image
processing (DIP).

