DOI QR코드

DOI QR Code

견운모를 이용한 벽마감용 천연페인트 제조

Preparation of Natural Wall Paint by Using Sericite Clay

  • 투고 : 2017.05.19
  • 심사 : 2017.06.19
  • 발행 : 2017.10.10

초록

급격한 도시화와 인구 증가로 인한 건물의 밀폐성 증가로 심각한 실내 공기 오염을 야기하고 있다. 몇몇 실내 공기오염물질 중 페인트에서 방출되는 휘발성 유기화합물(VOCs)이 주요 관심사이다. 따라서 친환경적인 페인트 제품 개발에 대한 요구가 증가하고 있다. 본 연구에서는 점토광물인 견운모를 사용하여 벽마감용 천연페인트를 제조하였다. 소규모 챔버를 사용하여 벽마감용 천연페인트에 존재하는 독성물질 확인 실험을 하였으며, 2개의 상업용 페인트와 비교 분석하였다. 총 VOC 양은 trace로 권장 실내 공기질 기준보다 낮은 것으로 나타났다. 벽마감용 천연페인트에서 톨루엔은 검출되지 않았으며 포름알데히드가 trace 레벨로 측정되었다. 독성지수 분석결과 2가지 친환경 상업용 페인트와 비교하여 본 연구에서 개발된 천연페인트가 낮은 유해물질 방출을 나타내었다. 건축자재등급 실험에서 벽마감용 천연페인트가 1등급으로 분류되었다. 이상의 연구결과에서 나타난 바와 같이 벽마감용 천연페인트의 주성분으로 견운모를 사용하는 것이 실내 공기질을 관리하는데 유용할 것이라 판단된다.

Due to the rapid urbanization and increased population, there is an increase in airtight nature of buildings which causes serious indoor air pollution. Among several indoor air pollutants, volatile organic compounds (VOCs) emitted from paint are of major concern. Therefore, there is an urge for the development of environmental friendly paint products. In this wok, a natural wall paint (NWP) was prepared by utilizing a natural clay material "sericite" as a main component. A small chamber test was carried out to identify the toxic substances release from NWP and the results were compared with two eco-friendly commercial paints. The total VOCs were detected in trace level inside the test chamber and their concentrations were below the recommended indoor air quality standards. Toluene was not detected for NWP, whereas formaldehyde was observed in trace level. The toxicity index results were compared with two commercial paints and found that NWP exhibited less harmful gas emission. Based on certification rating of building materials, NWP can be classified as the first grade of building materials. Due to the above advantages, the use of sericite as a major component in NWP will be a useful technique to maintain the indoor air quality.

키워드

참고문헌

  1. H. Nakashima, D. Nakajima, Y. Takagi, and S. Goto, Volatile organic compound (VOC) analysis and anti-VOC measures in water-based paints, J. Health Sci., 53, 311-319 (2007). https://doi.org/10.1248/jhs.53.311
  2. C. Yu and D. Crump, A review of the emission of VOCs from polymeric materials used in buildings, Build. Environ., 33, 357-374 (1998). https://doi.org/10.1016/S0360-1323(97)00055-3
  3. L. Zhong, F. C. Su, and S. Batterman, Volatile organic compounds (VOCs) in conventional and high performance school buildings in the U.S., Int. J. Environ. Res. Public Health, 14(1): 100 (2017). https://doi.org/10.3390/ijerph14010100
  4. T. M. Stafford, Indoor air quality and academic performance, J. Environ. Econ. Manag., 70, 34-50 (2015). https://doi.org/10.1016/j.jeem.2014.11.002
  5. T. Brock, M. Groteklaes, and P. Mischke, European Coatings Handbook, 412, Vincent Verlag Hannover, Germany (2006).
  6. C. Yu and D. Crump, Methods for measuring VOC emission from interior paints, Surf. Coat. Int., 83, 548-556 (2000). https://doi.org/10.1007/BF02692699
  7. H. Guo and F. Murray, Characterization of total volatile organic compound emissions from paints, Clean Prod. Process., 2, 28-36 (2000). https://doi.org/10.1007/s100980050048
  8. Y. M. Kim, S. Harrad, and R. M. Harrison, Concentrations and sources of VOCs in urban domestic and public microenvironments, Environ. Sci. Technol., 35, 997-1004 (2001). https://doi.org/10.1021/es000192y
  9. J. Xiong, L. Wang, Y. Bai, and Y. Zhang, Measuring the characteristic parameters of VOC emission from paints, Build. Environ., 66, 65-71 (2013). https://doi.org/10.1016/j.buildenv.2013.04.025
  10. A. P. Jones, Indoor air quality and health. Atmos. Environ., 33, 4535-4564 (1999). https://doi.org/10.1016/S1352-2310(99)00272-1
  11. J. Auvinen and L. Wirtanen, The influence of photocatalytic interior paints on indoor air quality, Atmos. Environ., 42, 4101-4112 (2008). https://doi.org/10.1016/j.atmosenv.2008.01.031
  12. N. S. Allen, M. Edge, G. Sandoval, J. Verran, J. Stratton, and J. Maltby, Photocatalytic coatings for environmental applications. Photochem. Photobiol., 81, 279-290 (2005). https://doi.org/10.1562/2004-07-01-RA-221.1
  13. T. Salthammer, F. Fuhrmann, N. Schulz, and N. Siwinksi, Removal of indoor contaminants by photocatalytic reaction. In: Proceedings of Healthy Buildings 2006, 4-8, Lisbon, Portugal (2006).
  14. J. Konta, Clay and man: clay raw materials in the service of man, Appl. Clay Sci., 10, 275-335 (1995). https://doi.org/10.1016/0169-1317(95)00029-4
  15. Y. S. Perng, E. L. C. Wang, C. C. Lu, and L. S. Kuo, Application of sericite to LWC coatings, TAPPI J., 7, 21-26 (2008).
  16. J. O. Kim, S. M. Lee, and C. Jeon, Adsorption characteristics of sericite for cesium ions from an aqueous solution, Chem. Eng.. Res. Des., 92, 368-374 (2014). https://doi.org/10.1016/j.cherd.2013.07.020
  17. Y. S. Perng, E. I. C. Wang, C. C. Lu, and L. S. Kuo, Performance of sericite as a pigment for coating paper, Appita Journal: Journal of the Technical Association of the Australian and New Zealand Pulp and Paper Industry, 59, 379-384 (2006).
  18. Y. J. Shih and Y. H. Shen, Swelling of sericite by LiNO3-hydrothermaltreatment, Appl. Clay. Sci., 43, 282-288 (2009). https://doi.org/10.1016/j.clay.2008.09.006
  19. C. H. Lee, J. W. Roh, C. Y. Lim, J. H. Hong, J. K. Lee, and E. G. Min, A multicenter, randomized, double-blind, placebo-controlled trial evaluating the efficacy and safety of a far infrared-emitting sericite belt in patients with primary dysmenorrhea, Compliment. Ther. Med., 19, 187-193 (2011). https://doi.org/10.1016/j.ctim.2011.06.004
  20. C. K. Sia, S. H. M. Nor, P. Ong, and M. S. C. Othman, Preparation of paint by using palm oil fly ash, pofa based pigment, The 3rd International Conference on Mechanical Engineering Research, Kuantan, Malaysia (2015).
  21. The Essential Chemical Industry - On Line, Paints, http://www.essentialchemicalindustry.org/materialsandapplications/paints.html (2013).

피인용 문헌

  1. A Hybrid Reactor System Comprised of Non-Thermal Plasma and Mn/Natural Zeolite for the Removal of Acetaldehyde from Food Waste vol.8, pp.9, 2017, https://doi.org/10.3390/catal8090389
  2. 견운모가 함유된 에어필터가 디젤자동차 연비에 미치는 영향 vol.31, pp.3, 2017, https://doi.org/10.14478/ace.2020.1027