DOI QR코드

DOI QR Code

Effects of Nb5+ Addition on Microstructure and Dielectric Properties of BaTiO3

  • Kim, Yeon Jung (Center for Innovative Engineering Education, Dankook University) ;
  • Hyun, June Won (Department of Physics, Dankook University)
  • Received : 2017.09.16
  • Accepted : 2017.09.28
  • Published : 2017.09.30

Abstract

Structural studies on the addition characteristics of Nb ions to $BaTiO_3$ solid solutions were performed by XRD and SEM/EDS technique. The X-ray diffraction peaks of the (111), (200) and (002) planes of Nb-doped $BaTiO_3$ solid solutions with different mole% of Nb were analyzed. We also investigated the relationship between the dielectric and structural properties of Nb-doped $BaTiO_3$. The transition temperatures of $BaTiO_3$ solid solution doped with 0.5mole%Nb and 1.0 mole%Nb were ${\sim}116^{\circ}C$ and ${\sim}87^{\circ}C$, respectively, which were found to be shifted to very low temperature from the transition temperature of pure $BaTiO_3$ (about $125^{\circ}C$). As a result of analysis of 1/K versus T and ln[$(1/K)-(1/K_m)$ versus ($T-T_m$)] of the two compositions used in this experiment, the diffusivity slightly differs from that of pure $BaTiO_3$ at temperatures above Curie temperature. And this characteristic was analyzed by applying the modified Curie-Weiss law.

Keywords

References

  1. H. F. Kay, P.Vousden, Phil.Mag. 40, 1019 (1949). https://doi.org/10.1080/14786444908561371
  2. K. Uchino, Ferroelectric Devices (Marcel Dekker, Inc., New York 2000).
  3. A. J. Moulson and J. M. Herbert, Electroceramics (Wiley Press, New York 2003).
  4. R. C. Buchanan, Ceramic Materials for Electronics Processing, Properties, and Applications (Marcel Dekker Inc., 1991).
  5. M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977).
  6. Y. J. Kim, J. W. Hyun, H. S. Kim, J. H. Lee, M. Y. Yun, S. J. Noh, and Y. H. Ahn, Bull. Korean. Chem. Soc., 30(6), 1267 (2009). https://doi.org/10.5012/bkcs.2009.30.6.1267
  7. A. Michalowicz, Thesis, Universite du Val de Marne, France, 1990.
  8. V. Paunovic, V. Mitic, M. Marjanovic, L. Kocic, Electronics and Energies, 29(2), 285 (2016).
  9. E. Brzozowski, A. C. Caballero, M. Villegas, M. S. Castro, and J. F. Fernandez, J. Eur. Ceram. Soc., 26, 2327 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.04.017
  10. Y. Pu, W. Chen, S. Chen, and H. T. Langhammer, Ceramica, 51, 214 (2005). https://doi.org/10.1590/S0366-69132005000300007
  11. M. Trainer, Am. J. Phys. 69(9), 966 (2001). https://doi.org/10.1119/1.1374251
  12. S. K. Chiang, W. E. Lee, and D. W. Readey, Am.Ceram.Bull.66(8), 1230 (1987).
  13. K. Uchino, S.Nomura, Ferroelectrics 44, 55 (1982).
  14. A. Jain, N.Makhuri, R. Saroha, M. Pastor, A. K. Jha, and A. K. Panwar, Adv. Mater. Lett, 7(7), 567 (2016). https://doi.org/10.5185/amlett.2016.6172
  15. M. S. Alkathy, AGayam, and K. C. James Raju, J. Mater Sci:Mater Electron, DOI 10.1007.s10854-016-5714-8 (2016).
  16. V. Paunovic, V. Mitic, M. Marjanovic, and L. Kocic, Electronics and Energies, 29(2), 285 (2016).
  17. M. A. Mohiddon and K. L. Yadav, J. Phys. D: Appl. Phys., 41, 225406 (2008). https://doi.org/10.1088/0022-3727/41/22/225406