DOI QR코드

DOI QR Code

Torque Predictive Control for Dynamic Performance Improvement of Clamping Force in EMB for Railroad Cars

철도 차량용 EMB의 클램핑 포스 과도응답 향상을 위한 토크 예측 제어

  • Jang, Yoon (Dept. of Electrical Engineering, Ajou University) ;
  • Bak, Yeongsu (Dept. of Electrical Engineering, Ajou University) ;
  • Lee, Kyo-Beum (Dept. of Electrical Engineering, Ajou University)
  • Received : 2017.09.06
  • Accepted : 2017.09.14
  • Published : 2017.09.30

Abstract

This paper proposes a torque predictive control for dynamic performance improvement of clamping force in electro-mechanical brake (EMB) for railroad cars. In general, pneumatic braking system (PBS) is used for railroad cars. It is sensitive depending on environmental changes and it has increasing idle running time because of slow dynamic response. Additionally, the PBS has low braking efficiency in case braking torque more than standard value is applied to the brake system such as emergency braking. In order to overcome these disadvantages of the PBS, the EMB is used for the railroad cars. The EMB for railroad cars has advantages that increasing the fuel efficiency and design flexibility because it is able to decrease vehicle weight of railroad cars and secure space for design. In this paper, control method for dynamic performance improvement of clamping force in EMB for railroad car is proposed. The effectiveness of the proposed control method is verified by the simulation results.

본 논문은 철도 차량용 electro-mechanical brake (EMB)의 클램핑 포스 과도응답 향상을 위한 토크 예측 제어 방법을 제안한다. 일반적으로 철도 차량에는 공압식 제동 시스템이 사용된다. 공압식 제동 시스템은 외부환경 변화에 민감하며, 과도응답 속도가 느리기 때문에 공주시간이 증가한다. 또한, 긴급 제동과 같은 기준 이상의 제동 토크를 인가하는 경우에 제동 효율이 낮은 단점이 있다. 이러한 공압식 제동 시스템의 단점은 철도 차량용 EMB 시스템을 적용하여 극복할 수 있다. 철도 차량용 EMB 시스템은 차량의 축중을 감소시키고, 설계 공간을 확보하기 때문에 연비 증가 및 설계 유연성 확보 등의 장점을 갖는다. 본 논문에서는 철도 차량용 EMB의 클램핑 포스 과도응답 향상을 위한 제어 방법을 제안한다. 제안하는 제어 방법의 타당성은 시뮬레이션을 통해 검증한다.

Keywords

References

  1. J. S. Cheon, "Brake by wire system configuration and functions using front EWB (Electric Wedge Brake) and rear EMB (Electro-Mechanical Brake) actuators," SAE Technical Papers, Oct. 2010. DOI : https://doi.org/10.4271/2010-01-1708.
  2. M. Kim, S. Oh, and S. Kwon, "Characteristic test of the electro mechanical brake actuator for urban railway vehicles," Korean Society Of Precision Engineering, vol. 33, no. 7, pp. 535-540, Jul. 2016. DOI : 10.7736/KSPE.2016.33.7.535
  3. I. Hwang, P. Yoon, and K. Huh, "Development of a vehicle stability control system using brake-by-wire actuators," Journal of Dynamic System, Measurement, and Control, vol. 130, no. 1, pp. 011008, Jan. 2008. DOI : 10.1115/1.2807190
  4. Y. Li, C. Wang, and H. Hu, "Predictive control of torque and flux of induction motor drives," in Proc. PEDS, pp. 67-71, Nov. 2005. DOI : 10.1109/PEDS.2005.1619662
  5. M.-H. Shin, D.-S. Hyun, S.-B. Cho, and S.-Y. Choe, "An improved stator flux estimation for speed sensorless stator flux orientation control of induction motors," IEEE Trans. Power Electron., vol. 15, no. 2, pp. 312-318, Mar. 2000. DOI : 10.1109/63.838104
  6. D. Y. Han, Y. S. Cho, and K.-B. Lee, "Simple sensorless control of interior permanent magnet synchronous motor using PLL based on extended EMF," Journal of Electrical Engineering & Technology, vol. 12, no. 2, pp.711-717, Mar. 2017. DOI : https://doi.org/10.5370/JEET.2017.12.1.1921
  7. J.-S. Yoon, K.-G. Lee, J.-S. Lee, and K.-B. Lee, "Off-line parameter identification of permanent magnet synchronous motor using a goertzel algorithm," Journal of Electrical Engineering & Technology, vol. 10, no. 6, pp. 2262-2270. Nov. 2015. DOI : https://doi.org/10.5370/JEET.2015.10.6.2262
  8. C. Jo, S. Hwang, and H. Kim, "Clamping-force control for electro mechanical brake." IEEE Trans. Vehi. Tech., vol. 59, no. 7, pp. 3205-3212, Sep. 2010. DOI : 10.1109/TVT.2010.2043696
  9. B. J. chalmers, L. Musaba, and D. F. Gosden, "Variable-frequency synchronous motor drives for electric vehicles," IEEE Trans. Ind. Appl., vol. 32, no. 4, pp. 896-903, Aug. 1996. DOI : 10.1109/28.511647
  10. D. Casadei, F. Profumo, G. Serra, and A. Tani, "FOC and DTC: Two viable schemes for induction motors torque control," IEEE Trans. Power Electron., vol. 17, no. 5, pp. 779-787, Sep. 2002. DOI : 10.1109/TPEL.2002.802183
  11. K.-B. Lee, J.-H. Song, I. Choy, and J.-Y Yoo, "Improvement of low-speed operation performances of DTC for 3-level inverter-fed induction motors," IEEE Trans. Ind. Electron., vol. 48, no. 5, pp. 1006-1014, Oct. 2001. DOI : 10.1109/41.954565
  12. Md. Habibullah, D. dah-Chuan, D. Xiao, J. E. Fletcher, and M. F. Rahman, "Low complexity predictive torque control strategies for a three-level inverter driven induction motor," IET Elect. Power Appl., vol. 11, no. 5, pp. 776-783, 2017. DOI : 10.1049/iet-epa.2016.0572
  13. H. Zhu, X. Xiao, and Y. Li, "Torque ripple reduction of the torque predictive control scheme for permanent-magnet synchronous motors," IEEE Trans. Power Electron., vol. 59, no. 2, pp. 871-877, Feb. 2012. DOI : 10.1109/TIE.2011.2157278
  14. Y. Cho, K.-B. Lee, M. Li, J.-H. Song, and Y. I. Lee, "Novel torque predictive control for a permanent-magnet synchronous motor with minimum torque ripple and fast dynamics," in Proc. APEC, pp. 2253-2258, Mar. 2013. DOI : 10.1109/APEC.2013.6520609
  15. H.-S. Ro, H.-G. Jeong, K.-G. Lee, J.-S. Lee, and K.-B. Lee, "Torque ripple minimization scheme using torque sharing function based fuzzy logic control for a switched reluctance motor," Journal of Electrical Engineering & Technology, vol. 10, no. 1, pp. 118-127, Jan. 2015. DOI : https://doi.org/10.5370/JEET.2015.10.1.118
  16. K.-B. Lee, J.-H. Song, I. Choy, and J.-Y. Yoo, "Torque ripple reduction in DTC of induction motor driven by 3-level inverter with low switching frequency," IEEE Trans. on Power Electron., vol. 17, no. 2, pp. 255-264, Mar. 2002. DOI : 10.1109/PESC.2000.878900
  17. Y. Cho, K.-B. Lee, J.-H. Song, and Y. I. Lee, "Torque-ripple minimization and fast dynamic scheme for torque predictive control of permanent-magnet synchronous motors," IEEE Trans. Power Electron., vol. 30, no. 4, pp. 2182-2190, Apr. 2015. DOI : 10.1109/TPEL.2014.2326192
  18. M. Siami, D. A. Khaburi, and J. Rodriguez, "Torque ripple reduction of predictive torque control for PMSM drives with parameter mismatch," IEEE Trans. Power Electron., vol. 32, no. 9, pp. 7160-7168, Sep. 2017. DOI : 10.1109/TPEL.2016.2630274