DOI QR코드

DOI QR Code

Structural stability analysis of nonlocal Megneto-Electro-Elastic(MEE) nano plates on elastic foundation

탄성지반위에 놓인 비국소 자기-전기-탄성 나노 판의 구조안정해석

  • Han, Sung-Cheon (Department of Civil & Railroad Engineering, Daewon University College) ;
  • Park, Weon-Tae (Division of Construction and Environmental Engineering, Kongju National University)
  • 한성천 (대원대학교 철도건설과) ;
  • 박원태 (공주대학교 건설환경공학부)
  • Received : 2017.08.14
  • Accepted : 2017.09.15
  • Published : 2017.09.30

Abstract

This study examined the structural stability of nonlocal magneto-electro-elastic nano plates on elastic foundations using first-order shear deformation theory. Navier's method has been used to solve the buckling loads for all edges simply supported boundary conditions. On the other hand, biaxial buckling analysis of nano-plates has beenrarely studied. According to the Maxwell equation and the magneto-electro boundary condition, the change inthe magnetic and electric potential along the thickness direction of the magneto-electro-elastic nano plate wasdetermined. To reformulate the elasticity theory of the magneto- electro-elastic nano plate, the differential constitutive equation of Eringen was used and the governing equation of the nonlocal elasticity theory was studied using variational theory. The effects of the elastic foundation arebased on Pasternak's assumption. The relationship between nonlocal theory and local theory was analyzed through calculation results. In addition, structural stability problems were investigated according to the electric and magnetic potentials, nonlocal parameters, elastic foundation parameters, and side-to-thickness ratio. The results of the analysis revealedthe effects of the magnetic and electric potential. These calculations can be used to compare future research on new material structures made of magneto-electro-elastic materials.

본 논문은 탄성지반위에 놓인 비국소 자기-전기-탄성 나노 판의 구조안정에 관하여 1차 전단변형이론을 이용하여 분석하였다. 4변이 단순지지된 자기-전기-탄성 나노 판의 좌굴하중을 구하기 위하여 Navier 방법을 적용하였다. 기존의 연구들에서는 2방향 좌굴해석은 거의 연구되지 않았다. Maxwell 방정식과 자기-전기 경계조건에 따라 자기-전기-탄성 나노 판의 두께 방향에 따른 자위 및 전위의 변화가 결정된다. 자기-전기-탄성 나노 판의 탄성이론을 재 공식화하기 위하여 Eringen의 비국소 미분 구성 관계식을 사용하였고 변분이론을 이용하여 비국소 탄성이론의 지배방정식을 연구하였다. 탄성지반의 효과는 Pasternak의 가정을 적용하였다. 비국소 이론과 국소 이론의 관계를 계산 결과를 통하여 분석하였다. 또한, 전위 및 자위의 크기, 비국소 매개변수, 탄성지반 매개변수 그리고 폭-두께 비에 따른 구조적 안정문제를 연구하였다. 분석 결과들은 전위 및 자위의 효과를 나타내었다. 이러한 계산 결과들은 자기-전기-탄성 재료로 구성된 신소재 구조물에 관한 향후 연구의 비교자료가 될 수 있을 것이다.

Keywords

References

  1. E. Pan, "Exact solution for simply supported and multilayered magneto-electro-elastic plates", Journal of Applied Mechanics, vol. 68, pp. 608-618, 2001. DOI: https://doi.org/10.1115/1.1380385
  2. E. Pan, P. R., Heyliger, "Free vibration of simply supported and multilayered magnetoelectro elastic plates", Journal of Sound and Vibration, vol. 252, no. 3, pp. 429-442, 2002. DOI: https://doi.org/10.1006/jsvi.2001.3693
  3. R. Wang, Q. Han, E. Pan, "An analytical solution for a multilayered magneto-electro-elastic circular plate under simply supported lateral boundary conditions", Smart Materials and Structures, vol. 19, pp. 065025, 2010. DOI: https://doi.org/10.1088/0964-1726/19/6/065025
  4. C. X. Xue, E. Pan, S. Y. Zhang, H. J. Chu, "Large deflection of a rectangular magnetoelectroelastic thin plate", Mechanics Research Communications, vol. 38, pp. 518-523, 2011. DOI: https://doi.org/10.1016/j.mechrescom.2011.07.003
  5. J. Sladek, V. Sladek, S. Krahulec, E. Pan, "The MLPG analyses of large deflections of magneto- electroelastic plates", Engineering and Analysis of Boundary Elements, vol. 37, pp. 673-682, 2013. DOI: https://doi.org/10.1016/j.enganabound.2013.02.001
  6. Y. S. Li, "Buckling analysis of magnetoelectro elastic plate resting on Pastrenak elastic foundation", Mechanics Research Communications, vol. 56, pp. 104-114, 2014. DOI: https://doi.org/10.1016/j.mechrescom.2013.12.007
  7. Y. S. Li, Z. Y. Cai, S. Y. Shi, "Buckling and free vibration of magnetoelectroelastic nanoplate based on nonlocal theory", Composite Structures, vol. 111, pp. 522-529, 2014. DOI: https://doi.org/10.1016/j.compstruct.2014.01.033
  8. W. J. Kim, W. H. Lee, W. T. Park, S. C. Han, "Nonlocal elasticity effects on free vibration properties of sigmoid functionally graded material nano-scale plates", J. Korea Academic-Industrial cooperation Society, vol. 15, no. 2, pp. 1109-1117, 2014. DOI: https://doi.org/10.5762/KAIS.2014.15.2.1109
  9. A. C. Eringen, "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", Journal of Applied Physics, vol. 54, pp. 4703-4710, 1983. DOI: https://doi.org/10.1063/1.332803
  10. A. C. Eringen, Nonlocal continuum field theories. Springer-Verlag, 2002.
  11. J. N. Reddy, Theory and Analysis of Elastic Plates and Shells, CRC Press, 2007.
  12. W. T. Park, S. C. Han, "Buckling analysis of nano- scale MEE(Magneto-Electro-Elastic) plates using the nonlocal elasticity theory", Advances in Mechanical Engineering, 2017, under review.