DOI QR코드

DOI QR Code

Protection of the brain through supplementation with larch arabinogalactan in a rat model of vascular dementia

  • Lim, Sun Ha (Department of Biochemistry, School of Medicine, Catholic University of Daegu) ;
  • Lee, Jongwon (Department of Biochemistry, School of Medicine, Catholic University of Daegu)
  • Received : 2017.06.16
  • Accepted : 2017.09.08
  • Published : 2017.10.02

Abstract

BACKGROUND/OBJECTIVES: Vascular dementia (VaD) caused by reduced blood supply to the brain manifests as white matter lesions accompanying demyelination and glial activation. We previously showed that arabinoxylan consisting of arabinose and xylose, and arabinose itself attenuated white matter injury in a rat model of VaD. Here, we investigated whether larch arabinogalactan (LAG) consisting of arabinose and galactose could also reduce white matter injury. MATERIALS/METHODS: We used a rat model of bilateral common carotid artery occlusion (BCCAO), in which the bilateral common carotid arteries were exposed and ligated permanently with silk sutures. The rats were fed a modified AIN-93G diet supplemented with LAG (100 mg/kg/day) for 5 days before and 4 weeks after being subjected to BCCAO. Four weeks after BCCAO, the pupillary light reflex (PLR) was measured to assess functional consequences of injury in the corpus callosum (cc). Additionally, Luxol fast blue staining and immunohistochemical staining were conducted to assess white matter injury, and astrocytic and microglial activation, respectively. RESULTS: We showed that white matter injury in the the cc and optic tract (opt) was attenuated in rats fed diet supplemented with LAG. Functional consequences of injury reduction in the opt manifested as improved PLR. Overall, these findings indicate that LAG intake protects against white matter injury through inhibition of glial activation. CONCLUSIONS: The results of this study support our hypothesis that cell wall polysaccharides consisting of arabinose are effective at protecting white matter injury, regardless of their origin. Moreover, LAG has the potential for development as a functional food to prevent vascular dementia.

Keywords

References

  1. Venkat P, Chopp M, Chen J. Models and mechanisms of vascular dementia. Exp Neurol 2015;272:97-108. https://doi.org/10.1016/j.expneurol.2015.05.006
  2. O'Brien JT, Thomas A. Vascular dementia. Lancet 2015;386:1698-706. https://doi.org/10.1016/S0140-6736(15)00463-8
  3. Iadecola C. The pathobiology of vascular dementia. Neuron 2013;80:844-66. https://doi.org/10.1016/j.neuron.2013.10.008
  4. Jiwa NS, Garrard P, Hainsworth AH. Experimental models of vascular dementia and vascular cognitive impairment: a systematic review. J Neurochem 2010;115:814-28. https://doi.org/10.1111/j.1471-4159.2010.06958.x
  5. Yamauchi H, Fukuyama H, Harada K, Nabatame H, Ogawa M, Ouchi Y, Kimura J, Konishi J. Callosal atrophy parallels decreased cortical oxygen metabolism and neuropsychological impairment in Alzheimer's disease. Arch Neurol 1993;50:1070-4. https://doi.org/10.1001/archneur.1993.00540100061017
  6. Lin CJ, Chang FC, Chou KH, Tu PC, Lee YH, Lin CP, Wang PN, Lee IH. Intervention versus aggressive medical therapy for cognition in severe asymptomatic carotid stenosis. AJNR Am J Neuroradiol 2016;37:1889-97. https://doi.org/10.3174/ajnr.A4798
  7. Terelak-Borys B, Skonieczna K, Grabska-Liberek I. Ocular ischemic syndrome - a systematic review. Med Sci Monit 2012;18:RA138-44.
  8. Stevens WD, Fortin T, Pappas BA. Retinal and optic nerve degeneration after chronic carotid ligation: time course and role of light exposure. Stroke 2002;33:1107-12. https://doi.org/10.1161/01.STR.0000014204.05597.0C
  9. Roman GC, Erkinjuntti T, Wallin A, Pantoni L, Chui HC. Subcortical ischaemic vascular dementia. Lancet Neurol 2002;1:426-36. https://doi.org/10.1016/S1474-4422(02)00190-4
  10. Han HS, Jang JH, Jang JH, Choi JS, Kim YJ, Lee C, Lim SH, Lee HK, Lee J. Water extract of Triticum aestivum L. and its components demonstrate protective effect in a model of vascular dementia. J Med Food 2010;13:572-8. https://doi.org/10.1089/jmf.2009.1242
  11. Lim SH, Lee J. Hot water extract of wheat bran attenuates white matter injury in a rat model of vascular dementia. Prev Nutr Food Sci 2014;19:145-55. https://doi.org/10.3746/pnf.2014.19.3.145
  12. Fincher GB, Sawyer WH, Stone BA. Chemical and physical properties of an arabinogalactan-peptide from wheat endosperm. Biochem J 1974;139:535-45. https://doi.org/10.1042/bj1390535
  13. Van den Bulck K, Swennen K, Loosveld AM, Courtin C, Brijs K, Proost P, Van Damme J, Van Campenhout S, Mort A, Delcour J. Isolation of cereal arabinogalactan-peptides and structural comparison of their carbohydrate and peptide moieties. J Cereal Sci 2005;41:59-67. https://doi.org/10.1016/j.jcs.2004.10.001
  14. Lim SH, Kim MY, Lee J. Apple pectin, a dietary fiber, ameliorates myocardial injury by inhibiting apoptosis in a rat model of ischemia/reperfusion. Nutr Res Pract 2014;8:391-7. https://doi.org/10.4162/nrp.2014.8.4.391
  15. Nishimura N, Tanabe H, Sasaki Y, Makita Y, Ohata M, Yokoyama S, Asano M, Yamamoto T, Kiriyama S. Pectin and high-amylose maize starch increase caecal hydrogen production and relieve hepatic ischaemia-reperfusion injury in rats. Br J Nutr 2012;107:485-92. https://doi.org/10.1017/S0007114511003229
  16. Wakita H, Tomimoto H, Akiguchi I, Kimura J. Glial activation and white matter changes in the rat brain induced by chronic cerebral hypoperfusion: an immunohistochemical study. Acta Neuropathol 1994;87:484-92. https://doi.org/10.1007/BF00294175
  17. Farkas E, Donka G, de Vos RA, Mihály A, Bari F, Luiten PG. Experimental cerebral hypoperfusion induces white matter injury and microglial activation in the rat brain. Acta Neuropathol 2004;108:57-64. https://doi.org/10.1007/s00401-004-0864-9
  18. Tykhomyrov AA, Pavlova AS, Nedzvetsky VS. Glial fibrillary acidic protein (GFAP): on the 45th anniversary of its discovery. Neurophysiology 2016;48:54-71. https://doi.org/10.1007/s11062-016-9568-8
  19. Imai Y, Kohsaka S. Intracellular signaling in M-CSF-induced microglia activation: role of Iba1. Glia 2002;40:164-74. https://doi.org/10.1002/glia.10149
  20. Farkas E, Luiten PG, Bari F. Permanent, bilateral common carotid artery occlusion in the rat: a model for chronic cerebral hypoperfusion-related neurodegenerative diseases. Brain Res Rev 2007;54:162-80. https://doi.org/10.1016/j.brainresrev.2007.01.003
  21. Lopez-Valdes HE, Martinez-Coria H. The role of neuroinflammation in age-related dementias. Rev Invest Clin 2016;68:40-8.
  22. Rosenberg GA, Bjerke M, Wallin A. Multimodal markers of inflammation in the subcortical ischemic vascular disease type of vascular cognitive impairment. Stroke 2014;45:1531-8. https://doi.org/10.1161/STROKEAHA.113.004534
  23. Liu Z, Chopp M. Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke. Prog Neurobiol 2016;144:103-20. https://doi.org/10.1016/j.pneurobio.2015.09.008
  24. Saggu R, Schumacher T, Gerich F, Rakers C, Tai K, Delekate A, Petzold GC. Astroglial NF-kB contributes to white matter damage and cognitive impairment in a mouse model of vascular dementia. Acta Neuropathol Commun 2016;4:76. https://doi.org/10.1186/s40478-016-0350-3
  25. McDougal DH, Gamlin PD. Autonomic control of the eye. Compr Physiol 2015;5:439-73.
  26. Lavinsky D, Arterni NS, Achaval M, Netto CA. Chronic bilateral common carotid artery occlusion: a model for ocular ischemic syndrome in the rat. Graefes Arch Clin Exp Ophthalmol 2006;244:199-204. https://doi.org/10.1007/s00417-005-0006-7
  27. Gunes A, Demirci S, Umul A. Vision loss and RNFL thinning after internal carotid arter occlusion and middle cerebral artery infarction. Acta Inform Med 2014;22:413-4. https://doi.org/10.5455/aim.2014.22.413-414
  28. Klijn CJ, Kappelle LJ. Haemodynamic stroke: clinical features, prognosis, and management. Lancet Neurol 2010;9:1008-17. https://doi.org/10.1016/S1474-4422(10)70185-X
  29. Pretegiani E, Rosini F, Dotti MT, Bianchi S, Federico A, Rufa A. Visual system involvement in CADASIL. J Stroke Cerebrovasc Dis 2013;22:1377-84. https://doi.org/10.1016/j.jstrokecerebrovasdis.2013.03.032
  30. Parisi V, Pierelli F, Coppola G, Restuccia R, Ferrazzoli D, Scassa C, Bianco F, Parisi L, Fattapposta F. Reduction of optic nerve fiber layer thickness in CADASIL. Eur J Neurol 2007;14:627-31. https://doi.org/10.1111/j.1468-1331.2007.01795.x
  31. Rufa A, Malandrini A, Dotti MT, Berti G, Salvadori C, Federico A. Typical pathological changes of CADASIL in the optic nerve. Neurol Sci 2005;26:271-4. https://doi.org/10.1007/s10072-005-0470-1
  32. Fabri M, Pierpaoli C, Barbaresi P, Polonara G. Functional topography of the corpus callosum investigated by DTI and fMRI. World J Radiol 2014;6:895-906. https://doi.org/10.4329/wjr.v6.i12.895
  33. Paul LK, Erickson RL, Hartman JA, Brown WS. Learning and memory in individuals with agenesis of the corpus callosum. Neuropsychologia 2016;86:183-92. https://doi.org/10.1016/j.neuropsychologia.2016.04.013
  34. Tomimoto H, Lin JX, Matsuo A, Ihara M, Ohtani R, Shibata M, Miki Y, Shibasaki H. Different mechanisms of corpus callosum atrophy in Alzheimer's disease and vascular dementia. J Neurol 2004;251:398-406. https://doi.org/10.1007/s00415-004-0330-6
  35. Jung WB, Mun CW, Kim YH, Park JM, Lee BD, Lee YM, Moon E, Jeong HJ, Chung YI. Cortical atrophy, reduced integrity of white matter and cognitive impairment in subcortical vascular dementia of Binswanger type. Psychiatry Clin Neurosci 2014;68:821-32. https://doi.org/10.1111/pcn.12196
  36. Lin L, Xue Y, Duan Q, Sun B, Lin H, Chen X, Luo L, Wei X, Zhang Z. Microstructural white matter abnormalities and cognitive dysfunction in subcortical ischemic vascular disease: an atlas-based diffusion tensor analysis study. J Mol Neurosci 2015;56:363-70. https://doi.org/10.1007/s12031-015-0550-5
  37. Best T, Howe P, Bryan J, Buckley J, Scholey A. Acute effects of a dietary non-starch polysaccharide supplement on cognitive performance in healthy middle-aged adults. Nutr Neurosci 2015;18:76-86. https://doi.org/10.1179/1476830513Y.0000000101
  38. Lim SH, Kim Y, Yun KN, Kim JY, Jang JH, Han MJ, Lee J. Plant-based foods containing cell wall polysaccharides rich in specific active monosaccharides protect against myocardial injury in rat myocardial infarction models. Sci Rep 2016;6:38728. https://doi.org/10.1038/srep38728
  39. Zhang P, Zhang Q, Whistler RL. L-arabinose release from arabinoxylan and arabinogalactan under potential gastric acidities. Cereal Chem 2003;80:252-4. https://doi.org/10.1094/CCHEM.2003.80.3.252
  40. Bach Knudsen KE. Microbial degradation of whole-grain complex carbohydrates and impact on short-chain fatty acids and health. Adv Nutr 2015;6:206-13. https://doi.org/10.3945/an.114.007450
  41. Koropatkin NM, Cameron EA, Martens EC. How glycan metabolism shapes the human gut microbiota. Nat Rev Microbiol 2012;10:323-35. https://doi.org/10.1038/nrmicro2746
  42. Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, Nagler CR, Ismagilov RF, Mazmanian SK, Hsiao EY. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 2015;161:264-76. https://doi.org/10.1016/j.cell.2015.02.047
  43. Fitzpatrick A, Roberts A, Witherly S. Larch arabinogalactan: a novel and multifunctional natural product. Agro Food Ind Hi Tech 2004;15:30-2.
  44. Dion C, Chappuis E, Ripoll C. Does larch arabinogalactan enhance immune function? A review of mechanistic and clinical trials. Nutr Metab (Lond) 2016;13:28. https://doi.org/10.1186/s12986-016-0086-x
  45. Groman EV, Enriquez PM, Jung C, Josephson L. Arabinogalactan for hepatic drug delivery. Bioconjug Chem 1994;5:547-56. https://doi.org/10.1021/bc00030a010
  46. Robinson RR, Feirtag J, Slavin JL. Effects of dietary arabinogalactan on gastrointestinal and blood parameters in healthy human subjects. J Am Coll Nutr 2001;20:279-85. https://doi.org/10.1080/07315724.2001.10719048
  47. Nair AB, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm 2016;7:27-31. https://doi.org/10.4103/0976-0105.177703

Cited by

  1. Protective Effects of Arabinogalactan-Peptide Isolated from Wheat Flour against Myocardial Injury in an Ischemia/Reperfusion Rat Model vol.23, pp.4, 2017, https://doi.org/10.3746/pnf.2018.23.4.309
  2. Supplementation with psyllium seed husk reduces myocardial damage in a rat model of ischemia/reperfusion vol.13, pp.3, 2017, https://doi.org/10.4162/nrp.2019.13.3.205