DOI QR코드

DOI QR Code

Antimicrobial-resistant Escherichia coli isolated from dogs and cats at animal hospitals in Daegu

대구지역 동물병원에서 입원중인 개와 고양이로부터 분리된 항생제 내성 대장균

  • Cho, Jae-Keun (Metropolitan Health & Enviornmental Research Institute) ;
  • Kim, Jeong-Mi (Metropolitan Health & Enviornmental Research Institute) ;
  • Kim, Hwan-Deuk (Metropolitan Health & Enviornmental Research Institute) ;
  • Kim, Kyung-Hee (Metropolitan Health & Enviornmental Research Institute)
  • 조재근 (대구광역시보건환경연구원) ;
  • 김정미 (대구광역시보건환경연구원) ;
  • 김환득 (대구광역시보건환경연구원) ;
  • 김경희 (대구광역시보건환경연구원)
  • Received : 2017.09.20
  • Accepted : 2017.09.25
  • Published : 2017.09.30

Abstract

This study was carried out to investigate the antimicrobial resistance profiles and resistance genes in 62 Escherichia coli isolated from dogs and cats hospitalized at animal hospitals in Daegu. E. coli isolates showed high resistance to nalidixic acid (46.8%) and ampicillin (45.2%). Resistance to the other antimicrobial agents was less than 30%, and no resistant isolates were detected for imipenem and amikacin. Of the 28 ampicillin-resistant isolates, TEM and CTX-M genes were detected in 16 (57.1%) and 11 (39.3%), respectively. The aadA gene was found in 4 (26.7%) of 15 gentamicin-resistant isolates, and strA-strB gene was found in 10 (66.7%) isolates. The sul I and sul II genes were detected in 11 (61.1%) and 14 (77.8%) of 18 trimethoprim/sulfamethoxazole-resistant isolates, and tetB gene in 9 (81.8%) of 11 minocycline-resistant isolates, and cmlA gene in 2 (22.2%) of 8 chloramphenicol-resistant isolates. The qnrB and qnrS genes were found in 3 (10.3%) and 1 (3.4%) of 28 nalidixic acid-resistant isolates, respectively. Whereas, none of the SHV, CMY-2, tetA, dfr Ia and dfr VII, and qnrA genes were found. Our results show a wide variety of resistance genes in E. coli isolates from dogs and cats. This study also represents the first report of qnrB and qnrS gene producing E. coli isolates from dogs in republic of Korea.

Keywords

References

  1. Aslantas O, Yilmaz ES. 2017. Prevalence and molecular characterization of extended-spectrum ${\beta}$-lactamase (ESBL) and plasmidic AmpC ${\beta}$-lactamase (pAmpC) producing Escherichia coli in dogs. J Vet Med Sci 79: 1024-1030. https://doi.org/10.1292/jvms.16-0432
  2. Bauer AW, Kirby WM, Sherris JC, Turck M. 1966. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45: 493-496. https://doi.org/10.1093/ajcp/45.4_ts.493
  3. Brinas L, Moreno MA, Teshager T, Saenz Y, Porrero MC, Dominguez L, Torres C. 2005. Monitoring and characterization of extended-spectrum beta-lactamases in Escherichia coli strains from healthy and sick animals in Spain in 2003. Antimicrob Agents Chemother 49: 1262-1264. https://doi.org/10.1128/AAC.49.3.1262-1264.2005
  4. Brinas L, Zarazaga M, Saenz Y, Ruiz-Larrea F, Torres C. 2002. Beta-lactamases in ampicillin- resistant Escherichia coli isolates from foods, humans, and healthy animals. Antimicrob Agents Chemother 46: 3156-3163. https://doi.org/10.1128/AAC.46.10.3156-3163.2002
  5. Bryan LE. 1984. Aminoglycoside resistance. pp. 241-277. In: Bryan LE, ed. Antimicrobial Drug Resistance. Orlando: Academic Press.
  6. Carattoli A, Lovari S, Franco A, Cordaro G, Di Matteo P, Battisti A. 2005. Extended-spectrum beta-lactamases in Escherichia coli isolated from dogs and cats in Rome, Italy, from 2001 to 2003. Antimicrob Agents Chemother 49: 833-835. https://doi.org/10.1128/AAC.49.2.833-835.2005
  7. Chang SK, Lo DY, Wei HW, Kuo HC. 2015. Antimicrobial resistance of Escherichia coli isolates from canine urinary tract infections. J Vet Med Sci 77: 59-65. https://doi.org/10.1292/jvms.13-0281
  8. Cho JK, Kim JH, Kim JM, Park, KIM KS. 2013. Antimicrobial reisstance and distribution of resistance gene in Enterobacteriaceae and Pseudomonas aeruginosa isolated from dogs and cats. Korean J Vet Res 36: 171-180. https://doi.org/10.7853/kjvs.2013.36.3.171
  9. Choi DY, Choi DS, Jang HK, Song HJ, Cho JG. 2010. Antimicrobial susceptibility of bacterial isolates from domestic dogs with urinary tract infection. J Vet Clin 27: 6-10.
  10. CLSI. Clinical and Laboratory Standards Institute. 2012. Performance standards for antimicrobial susceptibility testing; Twenty-second informational supplement. M100-S22. Wayne, Pa, USA.
  11. Costa D, Poeta P, Saenz Y, Coelho AC, Matos M, Vinue L, Rodrigues J, Torres C. 2008. Prevalence of antimicrobial resistance and resistance genes in faecal Escherichia coli isolates recovered from healthy pets. Vet Microbiol 127: 97-105. https://doi.org/10.1016/j.vetmic.2007.08.004
  12. Gibson JS1, Cobbold RN, Heisig P, Sidjabat HE, Kyaw-Tanner MT, Trott DJ. 2010. Identification of qnr and aac(6')-1b-cr plasmid-mediated fluoroquinolone resistance determinants in multidrug-resistant Enterobacter spp. isolated from extraintestinal infections in companion animals. Vet Microbiol 143: 329-336. https://doi.org/10.1016/j.vetmic.2009.11.031
  13. Guardabassi L, Schwarz S, Lloyd DH. 2004. Pet animals as reservoirs of antimicrobial-resistant bacteria. J Antimicrob Chemother 54: 321-332. https://doi.org/10.1093/jac/dkh332
  14. Jacoby GA. 2005. Mechanisms of resistance to quinolones. Clin Infect Dis 41: S120-126. https://doi.org/10.1086/428052
  15. Kim DK, Shin DH, Kim HY, Byun JW, Lee KH, Lee OS and Jung BY. 2011. Antimicrobial susce-ptibility of gram-negative bacteria from dogs and cats. J Vet Clin 28: 348-351.
  16. Kim MS, Jeong JT, Kang SY, Yun YM, Lee JM, Lee DS, Son WG. 2004. Antibiotic resistance of bacterial isolates from nasal discharges of dogs with respiratory diseases. J Vet Clin 21: 133-139.
  17. Lanz R, Kuhnert P, Boerlin P. 2003. Antimicrobial resistance and resistance gene determinants in clinical Escherichia coli from different animal species in Switzerland. Vet Microbiol 91: 73-84. https://doi.org/10.1016/S0378-1135(02)00263-8
  18. Lim SK. 2012. Veterinary clinically important antimicrobials. J Kor Vet Med Assoc 48: 662-666.
  19. Lim SK, Lee HS, Nam HM, Jung SC, Bae YC. 2009. CTX-M-type beta-lactamase in Escherichia coli isolated from sick animals in Korea. Microb Drug Resist 15: 139-142. https://doi.org/10.1089/mdr.2009.0901
  20. Liu X, Boothe DM, Thungrat K, Aly S. 2012. Mechanisms accounting for fluoroquinolone multidrug resistance Escherichia coli isolated from companion animals. Vet Microbiol 161: 159-168. https://doi.org/10.1016/j.vetmic.2012.07.019
  21. Liu X, Liu H, Li Y, Hao C. 2016. High Prevalence of ${\beta}$-lactamase and Plasmid-Mediated Quinolone Resistance Genes in Extended-Spectrum Cephalosporin-Resistant Escherichia coli from Dogs in Shaanxi, China. Front Microbiol 16: 1843.
  22. Liu X, Thungrat K, Boothe DM. 2016. Occurrence of OXA-48 Carbapenemase and Other ${\beta}$-Lactamase Genes in ESBL-Producing Multidrug Resistant Escherichia coli from Dogs and Cats in the United States, 2009-2013. Front Microbiol 7: 1057.
  23. Matsumoto Y, Ikeda F, Kamimura T, Yokota Y, Mine Y. 1988. Novel plasmid-mediated beta- lactamase from Escherichia coli that inactivates oxyimino-cephalosporins. Antimicrob Agents Chemother 32: 1243-1246. https://doi.org/10.1128/AAC.32.8.1243
  24. Normand EH, Gibson NR, Taylor DJ, Carmichael S. Reid SW 2000. Trends of antimicrobial resistance in bacterial isolates from a small animal referral hospital. Vet Rec 146: 151-155. https://doi.org/10.1136/vr.146.6.151
  25. O'Keefe A, Hutton TA, Schifferli DM, Rankin SC. 2010. First detection of CTX-M and SHV extended-spectrum beta-lactamases in Escherichia coli urinary tract isolates from dogs and cats in the United States. Antimicrob Agents Chemother 54: 3489-3492. https://doi.org/10.1128/AAC.01701-09
  26. Pagani L, Dell'Amico E, Migliavacca R, D'Andrea MM, Giacobone E, Amicosante G, Romero E, Rossolini GM. 2003. Multiple CTX-M-type extended-spectrum beta-lactamases in nosocomial isolates of Enterobacteriaceae from a hospital in northern Italy. J Clin Microbiol 41: 4264-4269. https://doi.org/10.1128/JCM.41.9.4264-4269.2003
  27. Park JM, Choi SS. 2016. Molecular Characterization of Quinolone Antibiotic Resistance in Escherichia coli Isolated from Retail Meat in Seoul. J Pharm Soc Korea 60: 1-7.
  28. Park SW, Seo KW, Hwang CY, Youn HW, Han HY. 2004. Isolation of bacteria from clinial specimens in veterinary medical teaching hospital and trend of antimicrobial susceptibility. J Vet Clin 21: 7-14.
  29. Rodriguez-Martinez JM, Cano ME, Velasco C, Martinez-Martinez L, Pascual A. 2011. Plasmid-mediated quinolone resistance: an update. J Infect Chemother 17: 149-182. https://doi.org/10.1007/s10156-010-0120-2
  30. Saenz Y, Brinas L, Dominguez E, Ruiz J, Zarazaga M, Vila J, Torres C. 2004. Mechanisms of resistance in multiple-antibiotic-resistant Escherichia coli strains of human, animal, and food origins. Antimicrob Agents Chemothe 48: 3996-4001. https://doi.org/10.1128/AAC.48.10.3996-4001.2004
  31. Sallem RB, Gharsa H, Slama KB, Rojo-Bezares B, Estepa V, Porres-Osante N, Jouini A, Klibi N, Saenz Y, Boudabous A, Torres C. 2012. First detection of CTX-M-1, CMY-2, and QnrB19 resistance mechanisms in fecal Escherichia coli isolates from healthy pets in Tunisia. Vector Borne Zoonotic Dis 13: 98-102.
  32. Sengelov G, Halling-Sorensen B, Aarestrup FM. 2003. Susceptibility of Escherichia coli and Enterococcus faecium isolated from pigs and broiler chickens to tetracycline degradation products and distribution of tetracycline resistance determinants in E. coli from food animals. Vet Microbiol 95: 91-101. https://doi.org/10.1016/S0378-1135(03)00123-8
  33. So JH, Kim J, Bae IK, Jeong SH, Kim SH, Lim SK, Park YH, Lee K. 2012. Dissemination of multidrug-resistant Escherichia coli in Korean veterinary hospitals. Diagn Microbiol Infect Dis. 73: 195-199. https://doi.org/10.1016/j.diagmicrobio.2012.03.010
  34. Sun Y, Zeng Z, Chen S, Ma J, He L, Liu Y, Deng Y, Lei T, Zhao J, Liu JH. 2010. High prevalence of bla(CTX-M) extended-spectrum ${\beta}$-lactamase genes in Escherichia coli isolates from pets and emergence of CTX-M-64 in China. Clin Microbiol Infect 16: 1475-1481. https://doi.org/10.1111/j.1469-0691.2010.03127.x
  35. Tamang MD, Nam HM, Chae MH, Kim SR, Gurung M, Jang GC, Jung SC, Lim SK. 2012b. Prevalence of plasmid-mediated quinolone resistance determinants among Escherichia coli isolated from food animals in Korea. Foodborne Pathog Dis. 9: 1057-1063. https://doi.org/10.1089/fpd.2012.1225
  36. Tamang MD, Nam HM, Jang GC, Kim SR, Chae MH, Jung SC, Byun JW, Park YH, Lim SK. 2012a. Molecular characterization of extended-spectrum-${\beta}$-lactamase-producing and plasmid-mediated AmpC ${\beta}$-lactamase-producing Escherichia coli isolated from stray dogs in South Korea. Antimicrob Agents Chemother 56: 2705-2712. https://doi.org/10.1128/AAC.05598-11
  37. Yang BS. 2007. Multiplex PCR for detection of quinolone resistance qnr genes in extended-spectrum ${\beta}$-lactamase producing Escherichia coli and Klebsiella pneumoniae. Korean J clin Lab Sci 39: 161-166.