DOI QR코드

DOI QR Code

Where Is the "Optimal" Fontan Hemodynamics?

  • Ohuchi, Hideo (Departments of Pediatric Cardiology and Adult Congenital Heart Disease, National Cerebral and Cardiovascular Center)
  • Received : 2017.05.18
  • Accepted : 2017.06.23
  • Published : 2017.11.30

Abstract

Fontan circulation is generally characterized by high central venous pressure, low cardiac output, and slightly low arterial oxygen saturation, and it is quite different from normal biventricular physiology. Therefore, when a patient with congenital heart disease is selected as a candidate for this type of circulation, the ultimate goals of therapy consist of 2 components. One is a smooth adjustment to the new circulation, and the other is long-term circulatory stabilization after adjustment. When either of these goals is not achieved, the patient is categorized as having "failed" Fontan circulation, and the prognosis is dismal. For the first goal of smooth adjustment, a lot of effort has been made to establish criteria for patient selection and intensive management immediately after the Fontan operation. For the second goal of long-term circulatory stabilization, there is limited evidence of successful strategies for long-term hemodynamic stabilization. Furthermore, there have been no data on optimal hemodynamics in Fontan circulation that could be used as a reference for patient management. Although small clinical trials and case reports are available, the results cannot be generalized to the majority of Fontan survivors. We recently reported the clinical and hemodynamic characteristics of early and late failing Fontan survivors and their association with all-cause mortality. This knowledge could provide insight into the complex Fontan pathophysiology and might help establish a management strategy for long-term hemodynamic stabilization.

Keywords

References

  1. Fontan F, Baudet E. Surgical repair of tricuspid atresia. Thorax 1971;26:240-8. https://doi.org/10.1136/thx.26.3.240
  2. d'Udekem Y, Iyengar AJ, Cochrane AD, et al. The Fontan procedure: contemporary techniques have improved long-term outcomes. Circulation 2007;116:I157-64.
  3. Ohuchi H, Kagisaki K, Miyazaki A, et al. Impact of the evolution of the Fontan operation on early and late mortality: a single-center experience of 405 patients over 3 decades. Ann Thorac Surg 2011;92:1457-66. https://doi.org/10.1016/j.athoracsur.2011.05.055
  4. Khairy P, Fernandes SM, Mayer JE Jr, et al. Long-term survival, modes of death, and predictors of mortality in patients with Fontan surgery. Circulation 2008;117:85-92. https://doi.org/10.1161/CIRCULATIONAHA.107.738559
  5. Diller GP, Kempny A, Alonso-Gonzalez R, et al. Survival prospects and circumstances of death in contemporary adult congenital heart disease patients under follow-up at a large tertiary centre. Circulation 2015;132:2118-25. https://doi.org/10.1161/CIRCULATIONAHA.115.017202
  6. Quinton E, Nightingale P, Hudsmith L, et al. Prevalence of atrial tachyarrhythmia in adults after Fontan operation. Heart 2015;101:1672-7. https://doi.org/10.1136/heartjnl-2015-307514
  7. John AS, Johnson JA, Khan M, Driscoll DJ, Warnes CA, Cetta F. Clinical outcomes and improved survival in patients with protein-losing enteropathy after the Fontan operation. J Am Coll Cardiol 2014;64:54-62. https://doi.org/10.1016/j.jacc.2014.04.025
  8. Ohuchi H, Yasuda K, Miyazaki A, et al. Haemodynamic characteristics before and after the onset of protein losing enteropathy in patients after the Fontan operation. Eur J Cardiothorac Surg 2013;43:e49-57. https://doi.org/10.1093/ejcts/ezs714
  9. Moore JW, Kirby WC, Madden WA, Gaither NS. Development of pulmonary arteriovenous malformations after modified Fontan operations. J Thorac Cardiovasc Surg 1989;98:1045-50.
  10. Ohuchi H, Yasuda K, Miyazaki A, et al. Prevalence and predictors of haemostatic complications in 412 Fontan patients: their relation to anticoagulation and haemodynamics. Eur J Cardiothorac Surg 2015;47:511-9. https://doi.org/10.1093/ejcts/ezu145
  11. Egbe AC, Connolly HM, Niaz T, et al. Prevalence and outcome of thrombotic and embolic complications in adults after Fontan operation. Am Heart J 2017;183:10-7. https://doi.org/10.1016/j.ahj.2016.09.014
  12. Ohuchi H, Yasuda K, Miyazaki A, et al. Comparison of prognostic variables in children and adults with Fontan circulation. Int J Cardiol 2014;173:277-83. https://doi.org/10.1016/j.ijcard.2014.03.001
  13. Assenza GE, Graham DA, Landzberg MJ, et al. MELD-XI score and cardiac mortality or transplantation in patients after Fontan surgery. Heart 2013;99:491-6. https://doi.org/10.1136/heartjnl-2012-303347
  14. Pundi K, Pundi KN, Kamath PS, et al. Liver disease in patients after the Fontan operation. Am J Cardiol 2016;117:456-60. https://doi.org/10.1016/j.amjcard.2015.11.014
  15. Asrani SK, Warnes CA, Kamath PS. Hepatocellular carcinoma after the Fontan procedure. N Engl J Med 2013;368:1756-7. https://doi.org/10.1056/NEJMc1214222
  16. Ohuchi H. Adult patients with Fontan circulation: what we know and how to manage adults with Fontan circulation? J Cardiol 2016;68:181-9. https://doi.org/10.1016/j.jjcc.2016.04.001
  17. Ohuchi H, Ohashi H, Takasugi H, Yamada O, Yagihara T, Echigo S. Restrictive ventilatory impairment and arterial oxygenation characterize rest and exercise ventilation in patients after Fontan operation. Pediatr Cardiol 2004;25:513-21. https://doi.org/10.1007/s00246-003-0652-7
  18. Ohuchi H, Yasuda K, Hasegawa S, et al. Influence of ventricular morphology on aerobic exercise capacity in patients after the Fontan operation. J Am Coll Cardiol 2001;37:1967-74. https://doi.org/10.1016/S0735-1097(01)01266-9
  19. Heinemann M, Breuer J, Steger V, Steil E, Sieverding L, Ziemer G. Incidence and impact of systemic venous collateral development after Glenn and Fontan procedures. Thorac Cardiovasc Surg 2001;49:172-8. https://doi.org/10.1055/s-2001-14339
  20. Levine TB, Levine AB. Regional blood flow supply and demand in heart failure. Am Heart J 1990;120:1547-51. https://doi.org/10.1016/0002-8703(90)90057-5
  21. Drexler H. Reduced exercise tolerance in chronic heart failure and its relationship to neurohumoral factors. Eur Heart J 1991;12 Suppl C:21-8. https://doi.org/10.1093/eurheartj/12.suppl_C.21
  22. Latus H, Gummel K, Diederichs T, et al. Aortopulmonary collateral flow is related to pulmonary artery size and affects ventricular dimensions in patients after the Fontan procedure. PLoS One 2013;8:e81684. https://doi.org/10.1371/journal.pone.0081684
  23. Ohuchi H, Miyazaki A, Negishi J, et al. Hemodynamic determinants of mortality after Fontan operation. Am Heart J 2017;189:9-18. https://doi.org/10.1016/j.ahj.2017.03.020
  24. Benedict CR, Shelton B, Johnstone DE, et al. Prognostic significance of plasma norepinephrine in patients with asymptomatic left ventricular dysfunction. SOLVD Investigators. Circulation 1996;94:690-7. https://doi.org/10.1161/01.CIR.94.4.690
  25. Deal BJ, Jacobs ML. Management of the failing Fontan circulation. Heart 2012;98:1098-104. https://doi.org/10.1136/heartjnl-2011-301133
  26. De Rita F, Crossland D, Griselli M, Hasan A. Management of the failing Fontan. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 2015;18:2-6. https://doi.org/10.1053/j.pcsu.2015.01.004
  27. Mori M, Aguirre AJ, Elder RW, et al. Beyond a broken heart: circulatory dysfunction in the failing Fontan. Pediatr Cardiol 2014;35:569-79. https://doi.org/10.1007/s00246-014-0881-y
  28. Mizuno M, Ohuchi H, Matsuyama TA, Miyazaki A, Ishibashi-Ueda H, Yamada O. Diverse multi-organ histopathologic changes in a failed Fontan patient. Pediatr Int 2016;58:1061-5. https://doi.org/10.1111/ped.13054
  29. Ohuchi H, Negishi J, Hayama Y, Miyazaki A, Shiraishi I, Ichikawa H. Renal resistive index reflects Fontan pathophysiology and predicts mortality. Heart. 2017 [Epub ahead of print].
  30. Ohuchi H, Miyamoto Y, Yamamoto M, et al. High prevalence of abnormal glucose metabolism in young adult patients with complex congenital heart disease. Am Heart J 2009;158:30-9. https://doi.org/10.1016/j.ahj.2009.04.021
  31. Avitabile CM, Leonard MB, Zemel BS, et al. Lean mass deficits, vitamin D status and exercise capacity in children and young adults after Fontan palliation. Heart 2014;100:1702-7. https://doi.org/10.1136/heartjnl-2014-305723
  32. Avitabile CM, Goldberg DJ, Zemel BS, et al. Deficits in bone density and structure in children and young adults following Fontan palliation. Bone 2015;77:12-6. https://doi.org/10.1016/j.bone.2015.04.012
  33. Book WM, Gerardin J, Saraf A, Marie Valente A, Rodriguez F 3rd. Clinical phenotypes of Fontan failure: implications for management. Congenit Heart Dis 2016;11:296-308. https://doi.org/10.1111/chd.12368
  34. Hebson CL, McCabe NM, Elder RW, et al. Hemodynamic phenotype of the failing Fontan in an adult population. Am J Cardiol 2013;112:1943-7. https://doi.org/10.1016/j.amjcard.2013.08.023
  35. Mori M, Hebson C, Shioda K, et al. Catheter-measured hemodynamics of adult Fontan circulation: associations with adverse event and end-organ dysfunctions. Congenit Heart Dis 2016;11:589-97. https://doi.org/10.1111/chd.12345
  36. Mitchell MB, Campbell DN, Ivy D, et al. Evidence of pulmonary vascular disease after heart transplantation for Fontan circulation failure. J Thorac Cardiovasc Surg 2004;128:693-702. https://doi.org/10.1016/j.jtcvs.2004.07.013
  37. Henaine R, Vergnat M, Bacha EA, et al. Effects of lack of pulsatility on pulmonary endothelial function in the Fontan circulation. J Thorac Cardiovasc Surg 2013;146:522-9. https://doi.org/10.1016/j.jtcvs.2012.11.031
  38. Ohuchi H, Ono S, Tanabe Y, et al. Long-term serial aerobic exercise capacity and hemodynamic properties in clinically and hemodynamically good, "excellent", Fontan survivors. Circ J 2012;76:195-203. https://doi.org/10.1253/circj.CJ-11-0540
  39. Iwakiri Y, Tsai MH, McCabe TJ, et al. Phosphorylation of eNOS initiates excessive NO production in early phases of portal hypertension. Am J Physiol Heart Circ Physiol 2002;282:H2084-90. https://doi.org/10.1152/ajpheart.00675.2001
  40. Iwakiri Y, Groszmann RJ. The hyperdynamic circulation of chronic liver diseases: from the patient to the molecule. Hepatology 2006;43:S121-31. https://doi.org/10.1002/hep.20993
  41. Song D, Liu H, Sharkey KA, Lee SS. Hyperdynamic circulation in portal-hypertensive rats is dependent on central c-fos gene expression. Hepatology 2002;35:159-66. https://doi.org/10.1053/jhep.2002.30417
  42. Waypa GB, Schumacker PT. Hypoxia-induced changes in pulmonary and systemic vascular resistance: where is the O2 sensor? Respir Physiol Neurobiol 2010;174:201-11. https://doi.org/10.1016/j.resp.2010.08.007
  43. Rychik J, Veldtman G, Rand E, et al. The precarious state of the liver after a Fontan operation: summary of a multidisciplinary symposium. Pediatr Cardiol 2012;33:1001-12. https://doi.org/10.1007/s00246-012-0315-7
  44. Carins TA, Shi WY, Iyengar AJ, et al. Long-term outcomes after first-onset arrhythmia in Fontan physiology. J Thorac Cardiovasc Surg 2016;152:1355-1363.e1. https://doi.org/10.1016/j.jtcvs.2016.07.073
  45. Pundi KN, Pundi KN, Johnson JN, et al. Sudden cardiac death and late arrhythmias after the Fontan operation. Congenit Heart Dis 2017;12:17-23. https://doi.org/10.1111/chd.12401
  46. Li D, Fan Q, Hirata Y, Ono M, An Q. Arrhythmias after Fontan operation with intra-atrial lateral tunnel versus extra-cardiac conduit: a systematic review and meta-analysis. Pediatr Cardiol 2017;38:873-80. https://doi.org/10.1007/s00246-017-1595-8
  47. Allen KY, Downing TE, Glatz AC, et al. Effect of Fontan-associated morbidities on survival with intact Fontan circulation. Am J Cardiol 2017;119:1866-71. https://doi.org/10.1016/j.amjcard.2017.03.004
  48. Nair AP, Timoh T, Fuster V. Contemporary medical management of systolic heart failure. Circ J 2012;76:268-77. https://doi.org/10.1253/circj.CJ-11-1424
  49. Wojnowich K, Korabathina R. Heart failure update: outpatient management. FP Essent 2016;442:18-25.
  50. Goldenberg I, Kutyifa V, Klein HU, et al. Survival with cardiac-resynchronization therapy in mild heart failure. N Engl J Med 2014;370:1694-701. https://doi.org/10.1056/NEJMoa1401426
  51. Enomoto Y, Aoki M, Nakamura Y, Hagino I, Fujiwara T, Nakajima H. Successful Fontan completion after cardiac resynchronization therapy. Circulation 2012;125:e655-8.
  52. Takeuchi D, Asagai S, Ishihara K, Nakanishi T. Successful Fontan conversion combined with cardiac resynchronization therapy for a case of failing Fontan circulation with ventricular dysfunction. Eur J Cardiothorac Surg 2014;46:913-5. https://doi.org/10.1093/ejcts/ezu084
  53. Honjo O, Atlin CR, Mertens L, et al. Atrioventricular valve repair in patients with functional single-ventricle physiology: impact of ventricular and valve function and morphology on survival and reintervention. J Thorac Cardiovasc Surg 2011;142:326-335.e2. https://doi.org/10.1016/j.jtcvs.2010.11.060
  54. King G, Gentles TL, Winlaw DS, et al. Common atrioventricular valve failure during single ventricle palliation. Eur J Cardiothorac Surg 2017;51:1037-43. https://doi.org/10.1093/ejcts/ezx025
  55. Agnoletti G, Gala S, Ferroni F, et al. Endothelin inhibitors lower pulmonary vascular resistance and improve functional capacity in patients with Fontan circulation. J Thorac Cardiovasc Surg 2017;153:1468-75. https://doi.org/10.1016/j.jtcvs.2017.01.051
  56. Tabarsi N, Guan M, Simmonds J, et al. Meta-analysis of the effectiveness of heart transplantation in patients with a failing Fontan. Am J Cardiol 2017;119:1269-74. https://doi.org/10.1016/j.amjcard.2017.01.001
  57. Matsuda H, Ichikawa H, Ueno T, Sawa Y. Heart transplantation for adults with congenital heart disease: current status and future prospects. Gen Thorac Cardiovasc Surg 2017;65:309-20.; Epub ahead of print. https://doi.org/10.1007/s11748-017-0777-x
  58. de Mattos AZ, de Mattos AA, Mendez-Sanchez N. Hepatorenal syndrome: current concepts related to diagnosis and management. Ann Hepatol 2016;15:474-81.
  59. Ruiz-del-Arbol L, Serradilla R. Cirrhotic cardiomyopathy. World J Gastroenterol 2015;21:11502-21. https://doi.org/10.3748/wjg.v21.i41.11502
  60. Uzun O, Wong JK, Bhole V, Stumper O. Resolution of protein-losing enteropathy and normalization of mesenteric Doppler flow with sildenafil after Fontan. Ann Thorac Surg 2006;82:e39-40. https://doi.org/10.1016/j.athoracsur.2006.08.043
  61. Bhagirath KM, Tam JW. Resolution of protein-losing enteropathy with low-molecular weight heparin in an adult patient with Fontan palliation. Ann Thorac Surg 2007;84:2110-2. https://doi.org/10.1016/j.athoracsur.2007.06.064
  62. Hoashi T, Ichikawa H, Ueno T, Kogaki S, Sawa Y. Steroid pulse therapy for protein-losing enteropathy after the Fontan operation. Congenit Heart Dis 2009;4:284-7. https://doi.org/10.1111/j.1747-0803.2009.00274.x
  63. Straver B, Wagenaar LJ, Blom NA, et al. Percutaneous tricuspid valve implantation in a Fontan patient with congestive heart failure and protein-losing enteropathy. Circ Cardiovasc Interv 2011;4:112-3. https://doi.org/10.1161/CIRCINTERVENTIONS.110.958736
  64. John AS, Driscoll DJ, Warnes CA, Phillips SD, Cetta F. The use of oral budesonide in adolescents and adults with protein-losing enteropathy after the Fontan operation. Ann Thorac Surg 2011;92:1451-6. https://doi.org/10.1016/j.athoracsur.2011.03.103
  65. Okano S, Sugimoto M, Takase M, Iseki K, Kajihama A, Azuma H. Effectiveness of high-dose spironolactone therapy in a patient with recurrent protein-losing enteropathy after the Fontan procedure. Intern Med 2016;55:1611-4. https://doi.org/10.2169/internalmedicine.55.6303
  66. Antonio M, Gordo A, Pereira C, Pinto F, Fragata I, Fragata J. Thoracic duct decompression for protein-losing enteropathy in failing Fontan circulation. Ann Thorac Surg 2016;101:2370-3. https://doi.org/10.1016/j.athoracsur.2015.08.079
  67. Friedland-Little JM, Gajarski RJ, Schumacher KR. Dopamine as a potential rescue therapy for refractory protein-losing enteropathy in Fontan-palliated patients. Pediatr Transplant 2017;21:e12925. https://doi.org/10.1111/petr.12925
  68. Wakeham MK, Van Bergen AH, Torero LE, Akhter J. Long-term treatment of plastic bronchitis with aerosolized tissue plasminogen activator in a Fontan patient. Pediatr Crit Care Med 2005;6:76-8. https://doi.org/10.1097/01.PCC.0000149320.06424.1D
  69. Apostolopoulou SC, Papagiannis J, Rammos S. Bosentan induces clinical, exercise and hemodynamic improvement in a pre-transplant patient with plastic bronchitis after Fontan operation. J Heart Lung Transplant 2005;24:1174-6. https://doi.org/10.1016/j.healun.2004.11.018
  70. Heath L, Ling S, Racz J, et al. Prospective, longitudinal study of plastic bronchitis cast pathology and responsiveness to tissue plasminogen activator. Pediatr Cardiol 2011;32:1182-9. https://doi.org/10.1007/s00246-011-0058-x
  71. Dori Y, Keller MS, Rome JJ, et al. Percutaneous lymphatic embolization of abnormal pulmonary lymphatic flow as treatment of plastic bronchitis in patients with congenital heart disease. Circulation 2016;133:1160-70. https://doi.org/10.1161/CIRCULATIONAHA.115.019710
  72. Opocher F, Varnier M, Sanders SP, et al. Effects of aerobic exercise training in children after the Fontan operation. Am J Cardiol 2005;95:150-2. https://doi.org/10.1016/j.amjcard.2004.08.085
  73. Brassard P, Poirier P, Martin J, et al. Impact of exercise training on muscle function and ergoreflex in Fontan patients: a pilot study. Int J Cardiol 2006;107:85-94. https://doi.org/10.1016/j.ijcard.2005.02.038
  74. Giardini A, Balducci A, Specchia S, Gargiulo G, Bonvicini M, Picchio FM. Effect of sildenafil on haemodynamic response to exercise and exercise capacity in Fontan patients. Eur Heart J 2008;29:1681-7. https://doi.org/10.1093/eurheartj/ehn215
  75. Goldberg DJ, French B, McBride MG, et al. Impact of oral sildenafil on exercise performance in children and young adults after the Fontan operation: a randomized, double-blind, placebo-controlled, crossover trial. Circulation 2011;123:1185-93. https://doi.org/10.1161/CIRCULATIONAHA.110.981746
  76. Schuuring MJ, Vis JC, van Dijk AP, et al. Impact of bosentan on exercise capacity in adults after the Fontan procedure: a randomized controlled trial. Eur J Heart Fail 2013;15:690-8. https://doi.org/10.1093/eurjhf/hft017
  77. Cordina RL, O'Meagher S, Karmali A, et al. Resistance training improves cardiac output, exercise capacity and tolerance to positive airway pressure in Fontan physiology. Int J Cardiol 2013;168:780-8. https://doi.org/10.1016/j.ijcard.2012.10.012
  78. Rhodes J, Ubeda-Tikkanen A, Clair M, et al. Effect of inhaled iloprost on the exercise function of Fontan patients: a demonstration of concept. Int J Cardiol 2013;168:2435-40. https://doi.org/10.1016/j.ijcard.2013.03.014
  79. Van De Bruaene A, La Gerche A, Claessen G, et al. Sildenafil improves exercise hemodynamics in Fontan patients. Circ Cardiovasc Imaging 2014;7:265-73. https://doi.org/10.1161/CIRCIMAGING.113.001243
  80. Hebert A, Mikkelsen UR, Thilen U, et al. Bosentan improves exercise capacity in adolescents and adults after Fontan operation: the TEMPO (treatment with endothelin receptor antagonist in Fontan patients, a randomized, placebo-controlled, double-blind study measuring peak oxygen consumption) study. Circulation 2014;130:2021-30. https://doi.org/10.1161/CIRCULATIONAHA.113.008441

Cited by

  1. Hemodynamic Changes and Clinical Outcomes after the Intra/Extracardiac Fenestrated Fontan Procedure vol.8, pp.2, 2018, https://doi.org/10.4236/wjcs.2018.82004
  2. Anesthetic management for non-cardiac surgery in a patient with Fontan palliation : case report vol.47, pp.4, 2017, https://doi.org/10.1097/cj9.0000000000000104
  3. Impact of the Fontan Operation on Organ Systems vol.19, pp.3, 2017, https://doi.org/10.2174/1871529x19666190211165124
  4. The Janus‐faced Fontan circulation: unravelling its elusive pathophysiology vol.21, pp.6, 2017, https://doi.org/10.1002/ejhf.1415
  5. Deeper Insights Into the Fontan Circulation vol.10, pp.4, 2017, https://doi.org/10.1177/2150135119849654
  6. Fontan-Associated Liver Disease : Screening, Management, and Transplant Considerations vol.142, pp.6, 2017, https://doi.org/10.1161/circulationaha.120.045597
  7. Value of Follow-Up N-Terminal Probrain Natriuretic Peptide (NT-proBNP) after a Modified Fontan Procedure vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/3300884
  8. Neutrophil-to-Lymphocyte and Platelet-to-Lymphocyte Ratio in Univentricular Patients From Birth to Follow-Up After Fontan-Predicting Lymphatic Abnormalities vol.9, pp.None, 2017, https://doi.org/10.3389/fped.2021.740951
  9. Anesthetic management of a child with double outlet right ventricle and severe polycythemia: A case report vol.9, pp.11, 2017, https://doi.org/10.12998/wjcc.v9.i11.2634
  10. Control strategy to enhance pulmonary vascular pulsatility for implantable cavopulmonary assist devices: A simulation study vol.70, pp.None, 2017, https://doi.org/10.1016/j.bspc.2021.103008
  11. The mid-term outcome of Fontan conversion compared with primary total cavopulmonary connection vol.78, pp.3, 2017, https://doi.org/10.1016/j.jjcc.2021.02.005
  12. Plasma volume status in patients after Fontan operation: Prognostic value and the associations with Fontan pathophysiology vol.5, pp.None, 2017, https://doi.org/10.1016/j.ijcchd.2021.100219
  13. Reduced ovarian function in women with complex congenital heart disease vol.7, pp.None, 2017, https://doi.org/10.1016/j.ijcchd.2021.100317