DOI QR코드

DOI QR Code

Bioresorbable Vascular Scaffold Korean Expert Panel Report

  • Ahn, Jung-Min (Heart Institute, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Park, Duk-Woo (Heart Institute, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Hong, Sung Jin (Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine) ;
  • Ahn, Young Keun (Division of Cardiology, Department of Medicine, Chonnam National University Hospital) ;
  • Hahn, Joo-Yong (Division of Cardiology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Kim, Won-Jang (Department of Cardiology, CHA Bundang Medical Center, CHA University) ;
  • Hong, Soon Jun (Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital) ;
  • Nam, Chang-Wook (Department of Medicine, Keimyung University College of Medicine) ;
  • Kang, Do-Yoon (Heart Institute, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Lee, Seung-Yul (Department of Internal Medicine, Wonkwang University Sanbon Hospital) ;
  • Chun, Woo Jung (Division of Cardiology, Department of Internal Medicine, Sungkyunkwan University Samsung Changwon Hospital) ;
  • Heo, Jung Ho (Division of Cardiology, Department of Internal Medicine, Kosin University Gospel Hospital) ;
  • Cho, Deok-Kyu (Department of Cardiology, Myongji Hospital) ;
  • Kim, Jin Won (Cardiovascular Center, Korea University Guro Hospital) ;
  • Her, Sung-Ho (Division of Cardiology, The Catholic University of Korea, Daejeon St. Mary's Hospital) ;
  • Kim, Sang Wook (Department of Cardiology, Chung-Ang University Hospital) ;
  • Yoo, Sang-Yong (Cardiovascular Center, GangNeung Asan Hospital) ;
  • Hong, Myeong-Ki (Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine) ;
  • Tahk, Seung-Jea (Division of Cardiology, Ajou University Medical Center) ;
  • Kim, Kee-Sik (Division of Cardiology, Department of Internal Medicine, Daegu Catholic University Medical Center) ;
  • Kim, Moo Hyun (Department of Cardiology, Dong-A University Medical Center) ;
  • Jang, Yangsoo (Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine) ;
  • Park, Seung-Jung (Heart Institute, University of Ulsan College of Medicine, Asan Medical Center)
  • Received : 2017.08.31
  • Accepted : 2017.09.12
  • Published : 2017.11.30

Abstract

Bioresorbable vascular scaffold (BRS) is an innovative device that provides structural support and drug release to prevent early recoil or restenosis, and then degrades into nontoxic compounds to avoid late complications related with metallic drug-eluting stents (DESs). BRS has several putative advantages. However, recent randomized trials and registry studies raised clinical concerns about the safety and efficacy of first generation BRS. In addition, the general guidance for the optimal practice with BRS has not been suggested due to limited long-term clinical data in Korea. To address the safety and efficacy of BRS, we reviewed the clinical evidence of BRS implantation, and suggested the appropriate criteria for patient and lesion selection, scaffold implantation technique, and management.

Keywords

References

  1. Serruys PW, Chevalier B, Dudek D, et al. A bioresorbable everolimus-eluting scaffold versus a metallic everolimus-eluting stent for ischaemic heart disease caused by de-novo native coronary artery lesions (ABSORB II): an interim 1-year analysis of clinical and procedural secondary outcomes from a randomised controlled trial. Lancet 2015;385:43-54. https://doi.org/10.1016/S0140-6736(14)61455-0
  2. Karanasos A, Simsek C, Gnanadesigan M, et al. OCT assessment of the long-term vascular healing response 5 years after everolimus-eluting bioresorbable vascular scaffold. J Am Coll Cardiol 2014;64:2343-56. https://doi.org/10.1016/j.jacc.2014.09.029
  3. Brugaletta S, Radu MD, Garcia-Garcia HM, et al. Circumferential evaluation of the neointima by optical coherence tomography after ABSORB bioresorbable vascular scaffold implantation: can the scaffold cap the plaque? Atherosclerosis 2012;221:106-12. https://doi.org/10.1016/j.atherosclerosis.2011.12.008
  4. Simsek C, Karanasos A, Magro M, et al. Long-term invasive follow-up of the everolimus-eluting bioresorbable vascular scaffold: five-year results of multiple invasive imaging modalities. EuroIntervention 2016;11:996-1003.
  5. Serruys PW, Chevalier B, Sotomi Y, et al. Comparison of an everolimus-eluting bioresorbable scaffold with an everolimus-eluting metallic stent for the treatment of coronary artery stenosis (ABSORB II): a 3 year, randomised, controlled, single-blind, multicentre clinical trial. Lancet 2016;388:2479-91. https://doi.org/10.1016/S0140-6736(16)32050-5
  6. Wykrzykowska JJ, Kraak RP, Hofma SH, et al. Bioresorbable scaffolds versus metallic stents in routine PCI. N Engl J Med 2017;376:2319-28. https://doi.org/10.1056/NEJMoa1614954
  7. Ellis SG, Kereiakes DJ, Metzger DC, et al. Everolimus-eluting bioresorbable scaffolds for coronary artery disease. N Engl J Med 2015;373:1905-15. https://doi.org/10.1056/NEJMoa1509038
  8. Tamburino C, Latib A, van Geuns RJ, et al. Contemporary practice and technical aspects in coronary intervention with bioresorbable scaffolds: a European perspective. EuroIntervention 2015;11:45-52. https://doi.org/10.4244/EIJY15M01_05
  9. Foin N, Lee R, Bourantas C, et al. Bioresorbable vascular scaffold radial expansion and conformation compared to a metallic platform: insights from in vitro expansion in a coronary artery lesion model. EuroIntervention 2016;12:834-44. https://doi.org/10.4244/EIJV12I7A138
  10. Onuma Y, Dudek D, Thuesen L, et al. Five-year clinical and functional multislice computed tomography angiographic results after coronary implantation of the fully resorbable polymeric everolimus-eluting scaffold in patients with de novo coronary artery disease: the ABSORB cohort A trial. JACC Cardiovasc Interv 2013;6:999-1009. https://doi.org/10.1016/j.jcin.2013.05.017
  11. Serruys PW, Ormiston J, van Geuns RJ, et al. A polylactide bioresorbable scaffold eluting everolimus for treatment of coronary stenosis: 5-year follow-up. J Am Coll Cardiol 2016;67:766-76.
  12. Ali ZA, Serruys PW, Kimura T, et al. 2-year outcomes with the absorb bioresorbable scaffold for treatment of coronary artery disease: a systematic review and meta-analysis of seven randomised trials with an individual patient data substudy. Lancet 2017;390:760-72. https://doi.org/10.1016/S0140-6736(17)31470-8
  13. Capodanno D, Gori T, Nef H, et al. Percutaneous coronary intervention with everolimus-eluting bioresorbable vascular scaffolds in routine clinical practice: early and midterm outcomes from the European multicentre GHOST-EU registry. EuroIntervention 2015;10:1144-53. https://doi.org/10.4244/EIJY14M07_11
  14. Abizaid A, Ribamar Costa J Jr, Bartorelli AL, et al. The ABSORB EXTEND study: preliminary report of the twelve-month clinical outcomes in the first 512 patients enrolled. EuroIntervention 2015;10:1396-401. https://doi.org/10.4244/EIJV10I12A243
  15. Wiebe J, Hoppmann P, Colleran R, et al. Long-term clinical outcomes of patients treated with everolimus-eluting bioresorbable stents in routine practice: 2-year results of the ISAR-ABSORB Registry. JACC Cardiovasc Interv 2017;10:1222-9.
  16. Cortese B, Ielasi A, Moscarella E, et al. Thirty-day outcomes after unrestricted implantation of bioresorbable vascular scaffold (from the prospective RAI Registry). Am J Cardiol 2017;119:1924-30. https://doi.org/10.1016/j.amjcard.2017.03.017
  17. Wohrle J, Naber C, Schmitz T, et al. Beyond the early stages: insights from the ASSURE registry on bioresorbable vascular scaffolds. EuroIntervention 2015;11:149-56. https://doi.org/10.4244/EIJY14M12_10
  18. Puricel S, Cuculi F, Weissner M, et al. Bioresorbable coronary scaffold thrombosis: multicenter comprehensive analysis of clinical presentation, mechanisms, and predictors. J Am Coll Cardiol 2016;67:921-31.
  19. Kraak RP, Hassell ME, Grundeken MJ, et al. Initial experience and clinical evaluation of the absorb bioresorbable vascular scaffold (BVS) in real-world practice: the AMC Single Centre Real World PCI Registry. EuroIntervention 2015;10:1160-8. https://doi.org/10.4244/EIJY14M08_08
  20. Rzeszutko L, Siudak Z, Tokarek T, et al. Twelve months clinical outcome after bioresorbable vascular scaffold implantation in patients with stable angina and acute coronary syndrome. Data from the Polish National Registry. Postepy Kardiol Interwencyjnej 2016;12:108-15.
  21. Felix CM, Fam JM, Diletti R, et al. Mid- to long-term clinical outcomes of patients treated with the everolimus-eluting bioresorbable vascular scaffold: the BVS Expand Registry. JACC Cardiovasc Interv 2016;9:1652-63. https://doi.org/10.1016/j.jcin.2016.04.035
  22. Muramatsu T, Onuma Y, van Geuns RJ, et al. 1-year clinical outcomes of diabetic patients treated with everolimus-eluting bioresorbable vascular scaffolds: a pooled analysis of the ABSORB and the SPIRIT trials. JACC Cardiovasc Interv 2014;7:482-93.
  23. Dudek D, Rzeszutko L, Zasada W, et al. Bioresorbable vascular scaffolds in patients with acute coronary syndromes: the POLAR ACS study. Pol Arch Med Wewn 2014;124:669-77.
  24. Gori T, Schulz E, Hink U, et al. Early outcome after implantation of absorb bioresorbable drug-eluting scaffolds in patients with acute coronary syndromes. EuroIntervention 2014;9:1036-41. https://doi.org/10.4244/EIJV9I9A176
  25. Hellenkamp K, Becker A, Gabriel YD, et al. Mid- to long-term outcome of patients treated with everolimus-eluting bioresorbable vascular scaffolds: data of the BVS registry Gottingen predominantly from ACS patients. Int J Cardiol 2017;234:58-63. https://doi.org/10.1016/j.ijcard.2017.02.069
  26. Kajiya T, Liang M, Sharma RK, et al. Everolimus-eluting bioresorbable vascular scaffold (BVS) implantation in patients with ST-segment elevation myocardial infarction (STEMI). EuroIntervention 2013;9:501-4. https://doi.org/10.4244/EIJV9I4A80
  27. Kocka V, Maly M, Tousek P, et al. Bioresorbable vascular scaffolds in acute ST-segment elevation myocardial infarction: a prospective multicentre study 'Prague 19'. Eur Heart J 2014;35:787-94. https://doi.org/10.1093/eurheartj/eht545
  28. Wiebe J, Mollmann H, Most A, et al. Short-term outcome of patients with ST-segment elevation myocardial infarction (STEMI) treated with an everolimus-eluting bioresorbable vascular scaffold. Clin Res Cardiol 2014;103:141-8. https://doi.org/10.1007/s00392-013-0630-x
  29. Diletti R, Karanasos A, Muramatsu T, et al. Everolimus-eluting bioresorbable vascular scaffolds for treatment of patients presenting with ST-segment elevation myocardial infarction: BVS STEMI first study. Eur Heart J 2014;35:777-86. https://doi.org/10.1093/eurheartj/eht546
  30. Brugaletta S, Gori T, Low AF, et al. Absorb bioresorbable vascular scaffold versus everolimus-eluting metallic stent in ST-segment elevation myocardial infarction: 1-year results of a propensity score matching comparison: the BVS-EXAMINATION Study (bioresorbable vascular scaffold-a clinical evaluation of everolimus eluting coronary stents in the treatment of patients with ST-segment elevation myocardial infarction). JACC Cardiovasc Interv 2015;8:189-97. https://doi.org/10.1016/j.jcin.2014.10.005
  31. Cortese B, Ielasi A, Romagnoli E, et al. Clinical comparison with short-term follow-up of bioresorbable vascular scaffold versus everolimus-eluting stent in primary percutaneous coronary interventions. Am J Cardiol 2015;116:705-10. https://doi.org/10.1016/j.amjcard.2015.05.049
  32. Kochman J, Tomaniak M, Pietrasik A, et al. Bioresorbable everolimus-eluting vascular scaffold in patients with ST-segment elevation myocardial infarction: optical coherence tomography evaluation and clinical outcomes. Cardiol J 2015;22:315-22. https://doi.org/10.5603/CJ.a2014.0090
  33. Chakraborty R, Patra S, Banerjee S, et al. Outcome of everolimus eluting bioabsorbable vascular scaffold (BVS) compared to non BVS drug eluting stent in the management of ST-segment elevation myocardial infarction (STEMI) - a comparative study. Cardiovasc Revasc Med 2016;17:151-4. https://doi.org/10.1016/j.carrev.2016.01.004
  34. Diletti R, Farooq V, Girasis C, et al. Clinical and intravascular imaging outcomes at 1 and 2 years after implantation of absorb everolimus eluting bioresorbable vascular scaffolds in small vessels. Late lumen enlargement: does bioresorption matter with small vessel size? Insight from the ABSORB cohort B trial. Heart 2013;99:98-105. https://doi.org/10.1136/heartjnl-2012-302598
  35. Ielasi A, Latib A, Naganuma T, et al. Early results following everolimus-eluting bioresorbable vascular scaffold implantation for the treatment of in-stent restenosis. Int J Cardiol 2014;173:513-4. https://doi.org/10.1016/j.ijcard.2014.03.061
  36. Moscarella E, Ielasi A, Granata F, et al. Long-term clinical outcomes after bioresorbable vascular scaffold implantation for the treatment of coronary in-stent restenosis: a multicenter Italian experience. Circ Cardiovasc Interv 2016;9:e003148.
  37. Alfonso F, Cuesta J, Perez-Vizcayno MJ, et al. Bioresorbable vascular scaffolds for patients with in-stent restenosis: the RIBS VI Study. JACC Cardiovasc Interv 2017;10:1841-51. https://doi.org/10.1016/j.jcin.2017.06.064
  38. Everaert B, Wykrzykowska JJ, Koolen J, et al. Recommendations for the use of bioresorbable vascular scaffolds in percutaneous coronary interventions: 2017 revision. Neth Heart J 2017;25:419-28. https://doi.org/10.1007/s12471-017-1014-z
  39. Indolfi C, De Rosa S, Colombo A. Bioresorbable vascular scaffolds - basic concepts and clinical outcome. Nat Rev Cardiol 2016;13:719-29. https://doi.org/10.1038/nrcardio.2016.151
  40. Miyazaki T, Latib A, Ruparelia N, et al. The use of a scoring balloon for optimal lesion preparation prior to bioresorbable scaffold implantation: a comparison with conventional balloon predilatation. EuroIntervention 2016;11:e1580-8. https://doi.org/10.4244/EIJV11I14A308
  41. Hibi K, Kimura K, Umemura S. Clinical utility and significance of intravascular ultrasound and optical coherence tomography in guiding percutaneous coronary interventions. Circ J 2015;79:24-33.
  42. Kimura T, Kozuma K, Tanabe K, et al. A randomized trial evaluating everolimus-eluting absorb bioresorbable scaffolds vs. everolimus-eluting metallic stents in patients with coronary artery disease: ABSORB Japan. Eur Heart J 2015;36:3332-42. https://doi.org/10.1093/eurheartj/ehv435
  43. Gao R, Yang Y, Han Y, et al. Bioresorbable vascular scaffolds versus metallic stents in patients with coronary artery disease: ABSORB China Trial. J Am Coll Cardiol 2015;66:2298-309. https://doi.org/10.1016/j.jacc.2015.09.054
  44. Campbell PT, Mahmud E, Marshall JJ. Interoperator and intraoperator (in)accuracy of stent selection based on visual estimation. Catheter Cardiovasc Interv 2015;86:1177-83. https://doi.org/10.1002/ccd.25780
  45. Gomez-Lara J, Diletti R, Brugaletta S, et al. Angiographic maximal luminal diameter and appropriate deployment of the everolimus-eluting bioresorbable vascular scaffold as assessed by optical coherence tomography: an ABSORB cohort B trial sub-study. EuroIntervention 2012;8:214-24. https://doi.org/10.4244/EIJV8I2A35
  46. Pinton FA, Falcao Bd, Mariani J JrKajita LJ, Filho AE, Lemos PA. Accuracy and precision of online quantitative coronary angiography with automatic calibration: a pilot study. Rev Bras Cardiol Invasiva 2015;23:58-60. https://doi.org/10.1016/j.rbci.2015.01.002
  47. Farooq V, Gomez-Lara J, Brugaletta S, et al. Proximal and distal maximal luminal diameters as a guide to appropriate deployment of the ABSORB everolimus-eluting bioresorbable vascular scaffold: a sub-study of the ABSORB Cohort B and the on-going ABSORB EXTEND Single Arm Study. Catheter Cardiovasc Interv 2012;79:880-8. https://doi.org/10.1002/ccd.23177
  48. Goto K, Mintz GS, Litherland C, et al. Lumen measurements from quantitative coronary angiography and IVUS: a PROSPECT Substudy. JACC Cardiovasc Imaging 2016;9:1011-3. https://doi.org/10.1016/j.jcmg.2015.07.006
  49. Kawamoto H, Jabbour RJ, Tanaka A, Latib A, Colombo A. The bioresorbable scaffold: will oversizing affect outcomes? JACC Cardiovasc Interv 2016;9:299-300. https://doi.org/10.1016/j.jcin.2015.11.019
  50. Ishibashi Y, Nakatani S, Sotomi Y, et al. Relation between bioresorbable scaffold sizing using QCA-Dmax and clinical outcomes at 1 year in 1,232 patients from 3 study cohorts (ABSORB Cohort B, ABSORB EXTEND, and ABSORB II). JACC Cardiovasc Interv 2015;8:1715-26. https://doi.org/10.1016/j.jcin.2015.07.026
  51. Souteyrand G, Amabile N, Mangin L, et al. Mechanisms of stent thrombosis analysed by optical coherence tomography: insights from the national PESTO French registry. Eur Heart J 2016;37:1208-16. https://doi.org/10.1093/eurheartj/ehv711
  52. Serruys PW, Katagiri Y, Sotomi Y, et al. Arterial remodeling after bioresorbable scaffolds and metallic stents. J Am Coll Cardiol 2017;70:60-74. https://doi.org/10.1016/j.jacc.2017.05.028
  53. Sorrentino S, De Rosa S, Ambrosio G, et al. The duration of balloon inflation affects the luminal diameter of coronary segments after bioresorbable vascular scaffolds deployment. BMC Cardiovasc Disord 2015;15:169. https://doi.org/10.1186/s12872-015-0163-5
  54. Elwany M, Latini RA, Di Palma G, Orrego PS, Cortese B. First experience of drug-coated balloons for treatment of bioresorbable vascular scaffold restenosis. Cardiovasc Revasc Med. 2017 [Epub ahead of print].
  55. Felix C, Everaert B, Jepson N, Tamburino C, van Geuns RJ. Treatment of bioresorbable scaffold failure. EuroIntervention 2015;11 Suppl V:V175-80. https://doi.org/10.4244/EIJV11SVA42
  56. Tanaka A, Ruparelia N, Kawamoto H, et al. Clinical outcomes following target lesion revascularization for bioresorbable scaffold failure. Catheter Cardiovasc Interv 2016;87:832-6. https://doi.org/10.1002/ccd.26171
  57. Tanaka A, Jabbour RJ, Mitomo S, Latib A, Colombo A. Hybrid percutaneous coronary intervention with bioresorbable vascular scaffolds in combination with drug-eluting stents or drug-coated balloons for complex coronary lesions. JACC Cardiovasc Interv 2017;10:539-47. https://doi.org/10.1016/j.jcin.2016.12.285
  58. Ielasi A, Miyazaki T, Geraci S, et al. Hybrid strategy with a bioresorbable scaffold and a drug-coated balloon for diffuse coronary artery disease: the "no more metallic cages" multicentre pilot experience. EuroIntervention 2016;11:e1589-95. https://doi.org/10.4244/EIJV11I14A309
  59. Levine GN, Bates ER, Blankenship JC, et al. 2015 ACC/AHA/SCAI focused update on primary percutaneous coronary intervention for patients with ST-elevation myocardial infarction: an update of the 2011 ACCF/AHA/SCAI Guideline for percutaneous coronary intervention and the 2013 ACCF/AHA Guideline for the management of ST-elevation myocardial infarction. J Am Coll Cardiol 2016;67:1235-50.
  60. Authors/Task Force membersWindecker S, Kolh P, et al. 2014 ESC/EACTS Guidelines on myocardial revascularization: the Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J 2014;35:2541-619. https://doi.org/10.1093/eurheartj/ehu278
  61. Karanasos A, van Geuns RJ, Zijlstra F, Regar E. Very late bioresorbable scaffold thrombosis after discontinuation of dual antiplatelet therapy. Eur Heart J 2014;35:1781. https://doi.org/10.1093/eurheartj/ehu031
  62. Capodanno D, Angiolillo DJ. Antiplatelet therapy after implantation of bioresorbable vascular scaffolds: a review of the published data, practical recommendations, and future directions. JACC Cardiovasc Interv 2017;10:425-37. https://doi.org/10.1016/j.jcin.2016.12.279
  63. Valgimigli M, Bueno H, Byrne RA, et al. 2017 ESC focused update on dual antiplatelet therapy in coronary artery disease developed in collaboration with EACTS: the Task Force for dual antiplatelet therapy in coronary artery disease of the European Society of Cardiology (ESC) and of the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2017 [Epub ahead of print].
  64. Puricel S, Arroyo D, Corpataux N, et al. Comparison of everolimus- and biolimus-eluting coronary stents with everolimus-eluting bioresorbable vascular scaffolds. J Am Coll Cardiol 2015;65:791-801. https://doi.org/10.1016/j.jacc.2014.12.017
  65. Sabate M, Windecker S, Iniguez A, et al. Everolimus-eluting bioresorbable stent vs. durable polymer everolimus-eluting metallic stent in patients with ST-segment elevation myocardial infarction: results of the randomized ABSORB ST-segment elevation myocardial infarction-TROFI II trial. Eur Heart J 2016;37:229-40. https://doi.org/10.1093/eurheartj/ehv500

Cited by

  1. Structural Design of Mechanical Property for Biodegradable Polymeric Stent vol.2019, pp.None, 2017, https://doi.org/10.1155/2019/2960435