DOI QR코드

DOI QR Code

Qualitative and Quantitative Comparison of Contrast-Enhanced Fluid-Attenuated Inversion Recovery, Magnetization Transfer Spin Echo, and Fat-Saturation T1-Weighted Sequences in Infectious Meningitis

  • Azad, Rajiv (Department of Radiology, SGRR Institute of Medical & Health Sciences) ;
  • Tayal, Mohit (Department of Radiology, SGRR Institute of Medical & Health Sciences) ;
  • Azad, Sheenam (Department of Pathology, SGRR Institute of Medical & Health Sciences) ;
  • Sharma, Garima (Department of Radiology, SGRR Institute of Medical & Health Sciences) ;
  • Srivastava, Rajendra Kumar (Department of Radiology, SGRR Institute of Medical & Health Sciences)
  • Received : 2016.09.10
  • Accepted : 2017.04.24
  • Published : 2017.12.01

Abstract

Objective: To compare the contrast-enhanced fluid-attenuated inversion recovery (CE-FLAIR), the CE T1-weighted (CE-T1W) sequence with fat suppression (FS) and magnetization transfer (MT) for early detection and characterization of infectious meningitis. Materials and Methods: Fifty patients and 10 control subjects were evaluated with the CE-FLAIR and the CE-T1W sequences with FS and MT. Qualitative assessment was done by two observers for presence and grading of abnormal leptomeningeal enhancement. Quantitative assessment included computation of net meningeal enhancement, using single pixel signal intensity software. A newly devised FLAIR based scoring system, based on certain imaging features including ventricular dilatation, ependymal enhancement, infarcts and subdural effusions was used to indicate the etiology. Data were analysed using the Student's t test, Cohen's Kappa coefficient, Pearson's correlation coefficient, the intraclass correlation coefficient, one way analysis of variance, and Fisher's exact test with Bonferroni correction as the post hoc test. Results: The CE-FLAIR sequence demonstrated a better sensitivity (100%), diagnostic accuracy (95%), and a stronger correlation with the cerebrospinal fluid, total leukocyte count (r = 0.75), protein (r = 0.77), adenosine deaminase (r = 0.81) and blood glucose (r = -0.6) values compared to the CE-T1W sequences. Qualitative grades and quantitative meningeal enhancement on the CE-FLAIR sequence were also significantly greater than those on the other sequences. The FLAIR based scoring system yielded a diagnostic accuracy of 91.6% and a sensitivity of 96%. A strong inverse Pearson's correlation (r = -0.95) was found between the assigned score and patient's Glasgow Coma Scale at the time of admission. Conclusion: The CE-FLAIR sequence is better suited for evaluating infectious meningitis and could be included as a part of the routine MR imaging protocol.

Keywords

References

  1. Ahmad A, Azad S, Azad R. Differentiation of leptomeningeal and vascular enhancement on post-contrast FLAIR MRI sequence: role in early detection of infectious meningitis. J Clin Diagn Res 2015;9:TC08-12
  2. Finelli DA, Hurst GC, Gullapali RP, Bellon EM. Improved contrast of enhancing brain lesions on postgadolinium, T1-weighted spin-echo images with use of magnetization transfer. Radiology 1994;190:553-559 https://doi.org/10.1148/radiology.190.2.8284415
  3. Kastrup O, Wanke I, Maschke M. Neuroimaging of infections. NeuroRx 2005;2:324-332 https://doi.org/10.1602/neurorx.2.2.324
  4. Kamra P, Azad R, Prasad KN, Jha S, Pradhan S, Gupta RK. Infectious meningitis: prospective evaluation with magnetization transfer MRI. Br J Radiol 2004;77:387-394 https://doi.org/10.1259/bjr/23641059
  5. Galassi W, Phuttharak W, Hesselink JR, Healy JF, Dietrich RB, Imbesi SG. Intracranial meningeal disease: comparison of contrast-enhanced MR imaging with fluid-attenuated inversion recovery and fat-suppressed T1-weighted sequences. AJNR Am J Neuroradiol 2005;26:553-559
  6. Singh SK, Leeds NE, Ginsberg LE. MR imaging of leptomeningeal metastases: comparison of three sequences. AJNR Am J Neuroradiol 2002;23:817-821
  7. Mehta RC, Pike GB, Haros SP, Enzmann DR. Central nervous system tumor, infection, and infarction: detection with gadolinium-enhanced magnetization transfer MR imaging. Radiology 1995;195:41-46 https://doi.org/10.1148/radiology.195.1.7892492
  8. Dousset V, Armand JP, Lacoste D, Mieze S, Letenneur L, Dartigues JF, et al. Magnetization transfer study of HIV encephalitis and progressive multifocal leukoencephalopathy. Groupe d'Epidemiologie Clinique du SIDA en Aquitaine. AJNR Am J Neuroradiol 1997;18:895-901
  9. Burke JW, Mathews VP, Elster AD, Ulmer JL, McLean FM, Davis SB. Contrast-enhanced magnetization transfer saturation imaging improves MR detection of herpes simplex encephalitis. AJNR Am J Neuroradiol 1996;17:773-776
  10. Kamran S, Bener AB, Alper D, Bakshi R. Role of fluidattenuated inversion recovery in the diagnosis of meningitis: comparison with contrast-enhanced magnetic resonance imaging. J Comput Assist Tomogr 2004;28:68-72 https://doi.org/10.1097/00004728-200401000-00011
  11. Mathews VP, Caldemeyer KS, Lowe MJ, Greenspan SL, Weber DM, Ulmer JL. Brain: gadolinium-enhanced fast fluidattenuated inversion-recovery MR imaging. Radiology 1999;211:257-263 https://doi.org/10.1148/radiology.211.1.r99mr25257
  12. Gupta RK, Kathuria MK, Pradhan S. Magnetization transfer MR imaging in CNS tuberculosis. AJNR Am J Neuroradiol 1999;20:867-875
  13. Singer MB, Atlas SW, Drayer BP. Subarachnoid space disease: diagnosis with fluid-attenuated inversion-recovery MR imaging and comparison with gadolinium-enhanced spin-echo MR imaging--blinded reader study. Radiology 1998;208:417-422 https://doi.org/10.1148/radiology.208.2.9680570
  14. Tsuchiya K, Inaoka S, Mizutani Y, Hachiya J. Fast fluidattenuated inversion-recovery MR of intracranial infections. AJNR Am J Neuroradiol 1997;18:909-913
  15. Vaswani AK, Nizamani WM, Ali M, Aneel G, Shahani BK, Hussain S. Diagnostic accuracy of contrast-enhanced FLAIR magnetic resonance imaging in diagnosis of meningitis correlated with CSF analysis. ISRN Radiol 2014;2014:578986
  16. De Coene B, Hajnal JV, Gatehouse P, Longmore DB, White SJ, Oatridge A, et al. MR of the brain using fluid-attenuated inversion recovery (FLAIR) pulse sequences. AJNR Am J Neuroradiol 1992;13:1555-1564
  17. Parmar H, Sitoh YY, Anand P, Chua V, Hui F. Contrast-enhanced flair imaging in the evaluation of infectious leptomeningeal diseases. Eur J Radiol 2006;58:89-95 https://doi.org/10.1016/j.ejrad.2005.11.012
  18. Melhem ER, Jara H, Eustace S. Fluid-attenuated inversion recovery MR imaging: identification of protein concentration thresholds for CSF hyperintensity. AJR Am J Roentgenol 1997;169:859-862 https://doi.org/10.2214/ajr.169.3.9275912
  19. Taoka T, Yuh WT, White ML, Quets JP, Maley JE, Ueda T. Sulcal hyperintensity on fluid-attenuated inversion recovery mr images in patients without apparent cerebrospinal fluid abnormality. AJR Am J Roentgenol 2001;176:519-524 https://doi.org/10.2214/ajr.176.2.1760519
  20. Mathews VP, Kuharik MA, Edwards MK, D'Amour PG, Azzarelli B, Dreesen RG. Dyke award. Gd-DTPA-enhanced MR imaging of experimental bacterial meningitis: evaluation and comparison with CT. AJR Am J Roentgenol 1989;152:131-136 https://doi.org/10.2214/ajr.152.1.131
  21. Lee EK, Lee EJ, Kim S, Lee YS. Importance of contrastenhanced fluid-attenuated inversion recovery magnetic resonance imaging in various intracranial pathologic conditions. Korean J Radiol 2016;17:127-141 https://doi.org/10.3348/kjr.2016.17.1.127
  22. Capone PM, Scheller JM. Neuroimaging of infectious disease. Neurol Clin 2014;32:127-145 https://doi.org/10.1016/j.ncl.2013.07.009
  23. Splendiani A, Puglielli E, De Amicis R, Necozione S, Masciocchi C, Gallucci M. Contrast-enhanced FLAIR in the early diagnosis of infectious meningitis. Neuroradiology 2005;47:591-598 https://doi.org/10.1007/s00234-005-1383-7
  24. Quint DJ, Eldevik OP, Cohen JK. Magnetic resonance imaging of normal meningeal enhancement at 1.5 T. Acad Radiol 1996;3:463-468 https://doi.org/10.1016/S1076-6332(96)80002-X
  25. Joosten AA, van der Valk PD, Geelen JA, Severin WP, Jansen Steur EN. Tuberculous meningitis: pitfalls in diagnosis. Acta Neurol Scand 2000;102:388-394 https://doi.org/10.1034/j.1600-0404.2000.102006388.x
  26. Grossman SA, Krabak MJ. Leptomeningeal carcinomatosis. Cancer Treat Rev 1999;25:103-119 https://doi.org/10.1053/ctrv.1999.0119
  27. Hughes DC, Raghavan A, Mordekar SR, Griffiths PD, Connolly DJ. Role of imaging in the diagnosis of acute bacterial meningitis and its complications. Postgrad Med J 2010;86:478-485 https://doi.org/10.1136/pgmj.2010.097022
  28. Upadhyayula S. Question 2 * is there a role for MRI as an adjunct for diagnosing bacterial meningitis? Arch Dis Child 2013;98:388-390 https://doi.org/10.1136/archdischild-2013-303858
  29. Lagi F, Bartalesi F, Pecile P, Biagioli T, Caldini AL, Fanelli A, et al. Proposal for a new score-based approach to improve efficiency of diagnostic laboratory workflow for acute bacterial meningitis in adults. J Clin Microbiol 2016;54:1851-1854 https://doi.org/10.1128/JCM.00149-16
  30. Schutte CM, van der Meyden CH. A prospective study of Glasgow Coma Scale (GCS), age, CSF-neutrophil count, and CSF-protein and glucose levels as prognostic indicators in 100 adult patients with meningitis. J Infect 1998;37:112-115 https://doi.org/10.1016/S0163-4453(98)80163-1

Cited by

  1. Age of Data in Contemporary Research Articles Published in Representative General Radiology Journals vol.19, pp.6, 2018, https://doi.org/10.3348/kjr.2018.19.6.1172
  2. Standardized approaches for clinical sampling and endpoint ascertainment in tuberculous meningitis studies vol.4, pp.None, 2017, https://doi.org/10.12688/wellcomeopenres.15497.2
  3. The value of contrast-enhanced FLAIR magnetic resonance imaging in detecting meningeal abnormalities in suspected cases of meningitis compared to conventional contrast-enhanced T1WI sequences vol.51, pp.1, 2020, https://doi.org/10.1186/s43055-020-00348-2
  4. Role of contrast-enhanced FLAIR MRI in diagnosis of intracranial lesions vol.57, pp.1, 2017, https://doi.org/10.1186/s41983-021-00360-x