DOI QR코드

DOI QR Code

Predictive Value of Cardiac Magnetic Resonance Imaging-Derived Myocardial Strain for Poor Outcomes in Patients with Acute Myocarditis

  • Lee, Ji Won (Department of Radiology, Pusan National University School of Medicine and Medical Research Institute, Pusan National University Hospital) ;
  • Jeong, Yeon Joo (Department of Radiology, Pusan National University School of Medicine and Medical Research Institute, Pusan National University Hospital) ;
  • Lee, Geewon (Department of Radiology, Pusan National University School of Medicine and Medical Research Institute, Pusan National University Hospital) ;
  • Lee, Nam Kyung (Department of Radiology, Pusan National University School of Medicine and Medical Research Institute, Pusan National University Hospital) ;
  • Lee, Hye Won (Department of Cardiology, Pusan National University School of Medicine and Medical Research Institute, Pusan National University Hospital) ;
  • Kim, Jin You (Department of Radiology, Pusan National University School of Medicine and Medical Research Institute, Pusan National University Hospital) ;
  • Choi, Bum-Sung (Pusan National University School of Medicine and Medical Research Institute, Pusan National University Yangsan Hospital) ;
  • Choo, Ki Seok (Department of Radiology, Pusan National University School of Medicine and Medical Research Institute, Pusan National University Yangsan Hospital)
  • Received : 2016.03.09
  • Accepted : 2016.11.08
  • Published : 2017.08.01

Abstract

Objective: To evaluate the utility of cardiovascular magnetic resonance (CMR)-derived myocardial strain measurement for the prediction of poor outcomes in patients with acute myocarditis. Materials and Methods: We retrospectively analyzed data from 37 patients with acute myocarditis who underwent CMR. Left ventricular (LV) size, LV mass index, ejection fraction and presence of myocardial late gadolinium enhancement (LGE) were analyzed. LV circumferential strain ($Ecc_{SAX}$), radial strain ($Err_{SAX}$) from mid-ventricular level short-axis cine views and LV longitudinal strain ($Ell_{LV}$), radial strain ($Err_{Lax}$) measurements from 2-chamber long-axis views were obtained. In total, 31 of 37 patients (83.8%) underwent follow-up echocardiography. The primary outcome was major adverse cardiovascular event (MACE). Incomplete LV functional recovery was a secondary outcome. Results: During an average follow-up of 41 months, 11 of 37 patients (29.7%) experienced MACE. Multivariable Cox proportional hazard regression analysis, which included LV mass index, LV ejection fraction, the presence of LGE, $Ecc_{SAX}$, $Err_{SAX}$, $Ell_{LV}$, and $Err_{Lax}$ values, indicated that the presence of LGE (hazard ratio, 42.88; p = 0.014), together with ErrLax (hazard ratio, 0.77 per 1%, p = 0.004), was a significant predictor of MACE. Kaplan-Meier analysis demonstrated worse outcomes in patient with LGE and an $Err_{Lax}$ value ${\leq}9.48%$. Multivariable backward regression analysis revealed that $Err_{Lax}$ values were the only significant predictors of LV functional recovery (hazard ratio, 0.54 per 1%; p = 0.042). Conclusion: CMR-derived $Err_{Lax}$ values can predict poor outcomes, both MACE and incomplete LV functional recovery, in patients with acute myocarditis, while LGE is only a predictor of MACE.

Keywords

References

  1. Sagar S, Liu PP, Cooper LT Jr. Myocarditis. Lancet 2012;379:738-747 https://doi.org/10.1016/S0140-6736(11)60648-X
  2. Kasper EK, Agema WR, Hutchins GM, Deckers JW, Hare JM, Baughman KL. The causes of dilated cardiomyopathy: a clinicopathologic review of 673 consecutive patients. J Am Coll Cardiol 1994;23:586-590 https://doi.org/10.1016/0735-1097(94)90740-4
  3. Drory Y, Turetz Y, Hiss Y, Lev B, Fisman EZ, Pines A, et al. Sudden unexpected death in persons less than 40 years of age. Am J Cardiol 1991;68:1388-1392 https://doi.org/10.1016/0002-9149(91)90251-F
  4. Mahrholdt H, Wagner A, Deluigi CC, Kispert E, Hager S, Meinhardt G, et al. Presentation, patterns of myocardial damage, and clinical course of viral myocarditis. Circulation 2006;114:1581-1590 https://doi.org/10.1161/CIRCULATIONAHA.105.606509
  5. Grun S, Schumm J, Greulich S, Wagner A, Schneider S, Bruder O, et al. Long-term follow-up of biopsy-proven viral myocarditis: predictors of mortality and incomplete recovery. J Am Coll Cardiol 2012;59:1604-1615 https://doi.org/10.1016/j.jacc.2012.01.007
  6. Kindermann I, Kindermann M, Kandolf R, Klingel K, Bultmann B, Muller T, et al. Predictors of outcome in patients with suspected myocarditis. Circulation 2008;118:639-648 https://doi.org/10.1161/CIRCULATIONAHA.108.769489
  7. Cooper LT, Baughman KL, Feldman AM, Frustaci A, Jessup M, Kuhl U, et al. The role of endomyocardial biopsy in the management of cardiovascular disease: a scientific statement from the American Heart Association, the American College of Cardiology, and the European Society of Cardiology. Endorsed by the Heart Failure Society of America and the Heart Failure Association of the European Society of Cardiology. J Am Coll Cardiol 2007;50:1914-1931 https://doi.org/10.1016/j.jacc.2007.09.008
  8. Ng AC, Delgado V, Bertini M, Antoni ML, van Bommel RJ, van Rijnsoever EP, et al. Alterations in multidirectional myocardial functions in patients with aortic stenosis and preserved ejection fraction: a two-dimensional speckle tracking analysis. Eur Heart J 2011;32:1542-1550 https://doi.org/10.1093/eurheartj/ehr084
  9. Augustine D, Lewandowski AJ, Lazdam M, Rai A, Francis J, Myerson S, et al. Global and regional left ventricular myocardial deformation measures by magnetic resonance feature tracking in healthy volunteers: comparison with tagging and relevance of gender. J Cardiovasc Magn Reson 2013;15:8 https://doi.org/10.1186/1532-429X-15-8
  10. Hsiao JF, Koshino Y, Bonnichsen CR, Yu Y, Miller FA Jr, Pellikka PA, et al. Speckle tracking echocardiography in acute myocarditis. Int J Cardiovasc Imaging 2013;29:275-284 https://doi.org/10.1007/s10554-012-0085-6
  11. Morton G, Schuster A, Jogiya R, Kutty S, Beerbaum P, Nagel E. Inter-study reproducibility of cardiovascular magnetic resonance myocardial feature tracking. J Cardiovasc Magn Reson 2012;14:43 https://doi.org/10.1186/1532-429X-14-43
  12. Ibrahim el-SH. Myocardial tagging by cardiovascular magnetic resonance: evolution of techniques--pulse sequences, analysis algorithms, and applications. J Cardiovasc Magn Reson 2011;13:36 https://doi.org/10.1186/1532-429X-13-36
  13. Hor KN, Gottliebson WM, Carson C, Wash E, Cnota J, Fleck R, et al. Comparison of magnetic resonance feature tracking for strain calculation with harmonic phase imaging analysis. JACC Cardiovasc Imaging 2010;3:144-151 https://doi.org/10.1016/j.jcmg.2009.11.006
  14. Baessler B, Schaarschmidt F, Dick A, Michels G, Maintz D. Diagnostic implications of magnetic resonance feature tracking derived myocardial strain parameters in acute myocarditis. Eur J Radiol 2016;85:218-227 https://doi.org/10.1016/j.ejrad.2015.11.023
  15. Magnani JW, Dec GW. Myocarditis: current trends in diagnosis and treatment. Circulation 2006;113:876-890 https://doi.org/10.1161/CIRCULATIONAHA.105.584532
  16. Friedrich MG, Sechtem U, Schulz-Menger J, Holmvang G, Alakija P, Cooper LT, et al. Cardiovascular magnetic resonance in myocarditis: a JACC white paper. J Am Coll Cardiol 2009;53:1475-1487 https://doi.org/10.1016/j.jacc.2009.02.007
  17. Schultz JC, Hilliard AA, Cooper LT Jr, Rihal CS. Diagnosis and treatment of viral myocarditis. Mayo Clin Proc 2009;84:1001-1009 https://doi.org/10.1016/S0025-6196(11)60670-8
  18. Mahrholdt H, Goedecke C, Wagner A, Meinhardt G, Athanasiadis A, Vogelsberg H, et al. Cardiovascular magnetic resonance assessment of human myocarditis: a comparison to histology and molecular pathology. Circulation 2004;109:1250-1258 https://doi.org/10.1161/01.CIR.0000118493.13323.81
  19. Caforio AL, Pankuweit S, Arbustini E, Basso C, Gimeno-Blanes J, Felix SB, et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology working group on myocardial and pericardial diseases. Eur Heart J 2013;34:2636-2648, 2648a-2648d https://doi.org/10.1093/eurheartj/eht210
  20. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography's Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 2005;18:1440-1463 https://doi.org/10.1016/j.echo.2005.10.005
  21. Sachdeva S, Song X, Dham N, Heath DM, DeBiasi RL. Analysis of clinical parameters and cardiac magnetic resonance imaging as predictors of outcome in pediatric myocarditis. Am J Cardiol 2015;115:499-504 https://doi.org/10.1016/j.amjcard.2014.11.029
  22. Buss SJ, Krautz B, Hofmann N, Sander Y, Rust L, Giusca S, et al. Prediction of functional recovery by cardiac magnetic resonance feature tracking imaging in first time ST-elevation myocardial infarction. Comparison to infarct size and transmurality by late gadolinium enhancement. Int J Cardiol 2015;183:162-170 https://doi.org/10.1016/j.ijcard.2015.01.022
  23. Onishi T, Saha SK, Ludwig DR, Onishi T, Marek JJ, Cavalcante JL, et al. Feature tracking measurement of dyssynchrony from cardiovascular magnetic resonance cine acquisitions: comparison with echocardiographic speckle tracking. J Cardiovasc Magn Reson 2013;15:95 https://doi.org/10.1186/1532-429X-15-95
  24. Andre F, Stock FT, Riffel J, Giannitsis E, Steen H, Scharhag J, et al. Incremental value of cardiac deformation analysis in acute myocarditis: a cardiovascular magnetic resonance imaging study. Int J Cardiovasc Imaging 2016;32:1093-1101 https://doi.org/10.1007/s10554-016-0878-0
  25. Schuster A, Morton G, Hussain ST, Jogiya R, Kutty S, Asrress KN, et al. The intra-observer reproducibility of cardiovascular magnetic resonance myocardial feature tracking strain assessment is independent of field strength. Eur J Radiol 2013;82:296-301 https://doi.org/10.1016/j.ejrad.2012.11.012
  26. Schuster A, Paul M, Bettencourt N, Morton G, Chiribiri A, Ishida M, et al. Cardiovascular magnetic resonance myocardial feature tracking for quantitative viability assessment in ischemic cardiomyopathy. Int J Cardiol 2013;166:413-420 https://doi.org/10.1016/j.ijcard.2011.10.137
  27. Schuster A, Stahnke VC, Unterberg-Buchwald C, Kowallick JT, Lamata P, Steinmetz M, et al. Cardiovascular magnetic resonance feature-tracking assessment of myocardial mechanics: Intervendor agreement and considerations regarding reproducibility. Clin Radiol 2015;70:989-998 https://doi.org/10.1016/j.crad.2015.05.006
  28. Chow LH, Radio SJ, Sears TD, McManus BM. Insensitivity of right ventricular endomyocardial biopsy in the diagnosis of myocarditis. J Am Coll Cardiol 1989;14:915-920 https://doi.org/10.1016/0735-1097(89)90465-8
  29. Abdel-Aty H, Boye P, Zagrosek A, Wassmuth R, Kumar A, Messroghli D, et al. Diagnostic performance of cardiovascular magnetic resonance in patients with suspected acute myocarditis: comparison of different approaches. J Am Coll Cardiol 2005;45:1815-1822 https://doi.org/10.1016/j.jacc.2004.11.069
  30. Laissy JP, Messin B, Varenne O, Iung B, Karila-Cohen D, Schouman-Claeys E, et al. MRI of acute myocarditis: a comprehensive approach based on various imaging sequences. Chest 2002;122:1638-1648 https://doi.org/10.1378/chest.122.5.1638

Cited by

  1. RE: Multi-Parameter CMR Approach in Acute Myocarditis to Improve Diagnosis and Prognostic Stratification vol.19, pp.2, 2017, https://doi.org/10.3348/kjr.2018.19.2.366
  2. Age of Data in Contemporary Research Articles Published in Representative General Radiology Journals vol.19, pp.6, 2018, https://doi.org/10.3348/kjr.2018.19.6.1172
  3. Guidelines for Cardiovascular Magnetic Resonance Imaging from the Korean Society of Cardiovascular Imaging-Part 3: Perfusion, Delayed Enhancement, and T1- and T2 Mapping vol.20, pp.12, 2017, https://doi.org/10.3348/kjr.2019.0411
  4. A Glimpse on Trends and Characteristics of Recent Articles Published in the Korean Journal of Radiology vol.20, pp.12, 2019, https://doi.org/10.3348/kjr.2019.0928
  5. Two-dimensional and three-dimensional cardiac magnetic resonance feature-tracking myocardial strain analysis in acute myocarditis patients with preserved ejection fraction vol.35, pp.6, 2017, https://doi.org/10.1007/s10554-019-01588-8
  6. Guideline for Cardiovascular Magnetic Resonance Imaging from the Korean Society of Cardiovascular Imaging-Part 1: Standardized Protocol vol.3, pp.3, 2017, https://doi.org/10.22468/cvia.2019.00108
  7. Guideline for Cardiovascular Magnetic Resonance Imaging from the Korean Society of Cardiovascular Imaging-Part 1: Standardized Protocol vol.20, pp.9, 2017, https://doi.org/10.3348/kjr.2019.0398
  8. Guidelines for Cardiovascular Magnetic Resonance Imaging from the Korean Society of Cardiovascular Imaging-Part 2: Interpretation of Cine, Flow, and Angiography Data vol.3, pp.4, 2019, https://doi.org/10.22468/cvia.2019.00115
  9. Cardiac MRI Evaluation of Myocarditis vol.21, pp.11, 2019, https://doi.org/10.1007/s11936-019-0757-9
  10. Guidelines for Cardiovascular Magnetic Resonance Imaging from the Korean Society of Cardiovascular Imaging-Part 2: Interpretation of Cine, Flow, and Angiography Data vol.20, pp.11, 2019, https://doi.org/10.3348/kjr.2019.0407
  11. Guidelines for Cardiovascular Magnetic Resonance Imaging from Korean Society of Cardiovascular Imaging (KOSCI) - Part 1: Standardized Protocol vol.23, pp.4, 2017, https://doi.org/10.13104/imri.2019.23.4.296
  12. Guidelines for Cardiovascular Magnetic Resonance Imaging from the Korean Society of Cardiovascular Imaging (KOSCI) - Part 2: Interpretation of Cine, Flow, and Angiography Data vol.23, pp.4, 2017, https://doi.org/10.13104/imri.2019.23.4.316
  13. Guidelines for Cardiovascular Magnetic Resonance Imaging from the Korean Society of Cardiovascular Imaging-Part 3: Perfusion, Delayed Enhancement, and T1- and T2 Mapping vol.4, pp.1, 2017, https://doi.org/10.22468/cvia.2019.00171
  14. Characteristics of Recent Articles Published in the Korean Journal of Radiology Based on the Citation Frequency vol.21, pp.12, 2020, https://doi.org/10.3348/kjr.2020.1322
  15. Guidelines for Cardiovascular Magnetic Resonance Imaging from the Korean Society of Cardiovascular Imaging (KOSCI) - Part 3: Perfusion, Delayed Enhancement, and T1- and T2 Mapping vol.24, pp.1, 2017, https://doi.org/10.13104/imri.2020.24.1.1
  16. The prognostic value of late gadolinium enhancement in myocarditis and clinically suspected myocarditis: systematic review and meta-analysis vol.30, pp.5, 2020, https://doi.org/10.1007/s00330-019-06643-5
  17. Diagnostic Value of Global Cardiac Strain in Patients With Myocarditis vol.44, pp.4, 2020, https://doi.org/10.1097/rct.0000000000001062
  18. Feature Tracking Myocardial Strain Incrementally Improves Prognostication in Myocarditis Beyond Traditional CMR Imaging Features vol.13, pp.9, 2017, https://doi.org/10.1016/j.jcmg.2020.04.025
  19. Imaging and Impact of Myocardial Strain in Myocarditis vol.13, pp.9, 2017, https://doi.org/10.1016/j.jcmg.2020.05.028
  20. Prognostic Impact of Late Gadolinium Enhancement by Cardiovascular Magnetic Resonance in Myocarditis : A Systematic Review and Meta-Analysis vol.14, pp.1, 2021, https://doi.org/10.1161/circimaging.120.011492
  21. Myocardial involvement and deformation abnormalities in idiopathic inflammatory myopathy assessed by CMR feature tracking vol.37, pp.2, 2021, https://doi.org/10.1007/s10554-020-02020-2