DOI QR코드

DOI QR Code

Diagnosis of Hepatocellular Carcinoma with Gadoxetic Acid-Enhanced MRI: 2016 Consensus Recommendations of the Korean Society of Abdominal Radiology

  • Received : 2016.12.30
  • Accepted : 2017.01.21
  • Published : 2017.06.01

Abstract

Diagnosis of hepatocellular carcinoma (HCC) with gadoxetic acid-enhanced liver magnetic resonance imaging (MRI) poses certain unique challenges beyond the scope of current guidelines. The regional heterogeneity of HCC in demographic characteristics, prevalence, surveillance, and socioeconomic status necessitates different treatment approaches, leading to variations in survival outcomes. Considering the medical practices in Korea, the Korean Society of Abdominal Radiology (KSAR) study group for liver diseases has developed expert consensus recommendations for diagnosis of HCC by gadoxetic acid-enhanced MRI with updated perspectives, using a modified Delphi method. During the 39th Scientific Assembly and Annual Meeting of KSAR (2016), consensus was reached on 12 of 16 statements. These recommendations might serve to ensure a more standardized diagnosis of HCC by gadoxetic acid-enhanced MRI.

Keywords

References

  1. Kudo M, Matsui O, Izumi N, Iijima H, Kadoya M, Imai Y, et al. JSH consensus-based clinical practice guidelines for the management of hepatocellular carcinoma: 2014 update by the Liver Cancer Study Group of Japan. Liver Cancer 2014;3:458-468 https://doi.org/10.1159/000343875
  2. European Association for the Study of the Liver; European Organisation for Research and Treatment of Cancer. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol 2012;56:908-943 https://doi.org/10.1016/j.jhep.2011.12.001
  3. Bruix J, Sherman M; American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma: an update. Hepatology 2011;53:1020-1022 https://doi.org/10.1002/hep.24199
  4. Korean Liver Cancer Study Group (KLCSG); National Cancer Center, Korea (NCC). 2014 Korean Liver Cancer Study Group-National Cancer Center Korea practice guideline for the management of hepatocellular carcinoma. Korean J Radiol 2015;16:465-522 https://doi.org/10.3348/kjr.2015.16.3.465
  5. American College of Radiology. Liver Imaging Reporting and Data System (LI-RADS) version 2014. Available at: https://www.acr.org/Quality-Safety/Resources/LIRADS. Accessed December 1, 2016
  6. Sherman M. The radiological diagnosis of hepatocellular carcinoma. Am J Gastroenterol 2010;105:610-612 https://doi.org/10.1038/ajg.2009.663
  7. El-Serag HB. Hepatocellular carcinoma. N Engl J Med 2011;365:1118-1127 https://doi.org/10.1056/NEJMra1001683
  8. Graf D, Vallbohmer D, Knoefel WT, Kropil P, Antoch G, Sagir A, et al. Multimodal treatment of hepatocellular carcinoma. Eur J Intern Med 2014;25:430-437 https://doi.org/10.1016/j.ejim.2014.03.001
  9. Shukla A, Vadeyar H, Rela M, Shah S. Liver transplantation: East versus West. J Clin Exp Hepatol 2013;3:243-253 https://doi.org/10.1016/j.jceh.2013.08.004
  10. de Villa V, Lo CM. Liver transplantation for hepatocellular carcinoma in Asia. Oncologist 2007;12:1321-1331 https://doi.org/10.1634/theoncologist.12-11-1321
  11. Davenport MS, Viglianti BL, Al-Hawary MM, Caoili EM, Kaza RK, Liu PS, et al. Comparison of acute transient dyspnea after intravenous administration of gadoxetate disodium and gadobenate dimeglumine: effect on arterial phase image quality. Radiology 2013;266:452-461 https://doi.org/10.1148/radiol.12120826
  12. Kagawa Y, Okada M, Kumano S, Katsube T, Imaoka I, Tanigawa N, et al. Optimal scanning protocol of arterial dominant phase for hypervascular hepatocellular carcinoma with gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid-enhanced MR. J Magn Reson Imaging 2011;33:864-872 https://doi.org/10.1002/jmri.22487
  13. Choi JY, Lee JM, Sirlin CB. CT and MR imaging diagnosis and staging of hepatocellular carcinoma: part I. Development, growth, and spread: key pathologic and imaging aspects. Radiology 2014;272:635-654 https://doi.org/10.1148/radiol.14132361
  14. Llovet JM. Updated treatment approach to hepatocellular carcinoma. J Gastroenterol 2005;40:225-235 https://doi.org/10.1007/s00535-005-1566-3
  15. Mitchell DG, Bruix J, Sherman M, Sirlin CB. LI-RADS (Liver Imaging Reporting and Data System): summary, discussion, and consensus of the LI-RADS Management Working Group and future directions. Hepatology 2015;61:1056-1065 https://doi.org/10.1002/hep.27304
  16. An C, Park MS, Kim D, Kim YE, Chung WS, Rhee H, et al. Added value of subtraction imaging in detecting arterial enhancement in small (< 3 cm) hepatic nodules on dynamic contrast-enhanced MRI in patients at high risk of hepatocellular carcinoma. Eur Radiol 2013;23:924-930 https://doi.org/10.1007/s00330-012-2685-x
  17. Nino-Murcia M, Olcott EW, Jeffrey RB Jr, Lamm RL, Beaulieu CF, Jain KA. Focal liver lesions: pattern-based classification scheme for enhancement at arterial phase CT. Radiology 2000;215:746-751 https://doi.org/10.1148/radiology.215.3.r00jn03746
  18. Ebara M, Fukuda H, Kojima Y, Morimoto N, Yoshikawa M, Sugiura N, et al. Small hepatocellular carcinoma: relationship of signal intensity to histopathologic findings and metal content of the tumor and surrounding hepatic parenchyma. Radiology 1999;210:81-88 https://doi.org/10.1148/radiology.210.1.r99ja4181
  19. Kadoya M, Matsui O, Takashima T, Nonomura A. Hepatocellular carcinoma: correlation of MR imaging and histopathologic findings. Radiology 1992;183:819-825 https://doi.org/10.1148/radiology.183.3.1316622
  20. Lutz AM, Willmann JK, Goepfert K, Marincek B, Weishaupt D. Hepatocellular carcinoma in cirrhosis: enhancement patterns at dynamic gadolinium- and superparamagnetic iron oxide-enhanced T1-weighted MR imaging. Radiology 2005;237:520-528 https://doi.org/10.1148/radiol.2372041183
  21. Reimer P, Rummeny EJ, Shamsi K, Balzer T, Daldrup HE, Tombach B, et al. Phase II clinical evaluation of Gd-EOBDTPA: dose, safety aspects, and pulse sequence. Radiology 1996;199:177-183 https://doi.org/10.1148/radiology.199.1.8633143
  22. Secil M, Obuz F, Altay C, Gencel O, Igci E, Sagol O, et al. The role of dynamic subtraction MRI in detection of hepatocellular carcinoma. Diagn Interv Radiol 2008;14:200-204
  23. Winters SD, Jackson S, Armstrong GA, Birchall IW, Lee KH, Low G. Value of subtraction MRI in assessing treatment response following image-guided loco-regional therapies for hepatocellular carcinoma. Clin Radiol 2012;67:649-655 https://doi.org/10.1016/j.crad.2011.11.013
  24. Zhu RX, Seto WK, Lai CL, Yuen MF. Epidemiology of hepatocellular carcinoma in the Asia-Pacific region. Gut Liver 2016;10:332-339
  25. Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann HJ. Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol 2005;40:715-724 https://doi.org/10.1097/01.rli.0000184756.66360.d3
  26. Hamm B, Staks T, Muhler A, Bollow M, Taupitz M, Frenzel T, et al. Phase I clinical evaluation of Gd-EOB-DTPA as a hepatobiliary MR contrast agent: safety, pharmacokinetics, and MR imaging. Radiology 1995;195:785-792 https://doi.org/10.1148/radiology.195.3.7754011
  27. Davenport MS, Caoili EM, Kaza RK, Hussain HK. Matched within-patient cohort study of transient arterial phase respiratory motion-related artifact in MR imaging of the liver: gadoxetate disodium versus gadobenate dimeglumine. Radiology 2014;272:123-131 https://doi.org/10.1148/radiol.14132269
  28. Kim SY, Park SH, Wu EH, Wang ZJ, Hope TA, Chang WC, et al. Transient respiratory motion artifact during arterial phase MRI with gadoxetate disodium: risk factor analyses. AJR Am J Roentgenol 2015;204:1220-1227 https://doi.org/10.2214/AJR.14.13677
  29. Tamada T, Ito K, Yoshida K, Kanki A, Higaki A, Tanimoto D, et al. Comparison of three different injection methods for arterial phase of Gd-EOB-DTPA enhanced MR imaging of the liver. Eur J Radiol 2011;80:e284-e288 https://doi.org/10.1016/j.ejrad.2010.12.082
  30. Zech CJ, Vos B, Nordell A, Urich M, Blomqvist L, Breuer J, et al. Vascular enhancement in early dynamic liver MR imaging in an animal model: comparison of two injection regimen and two different doses Gd-EOB-DTPA (gadoxetic acid) with standard Gd-DTPA. Invest Radiol 2009;44:305-310 https://doi.org/10.1097/RLI.0b013e3181a24512
  31. Haradome H, Grazioli L, Tsunoo M, Tinti R, Frittoli B, Gambarini S, et al. Can MR fluoroscopic triggering technique and slow rate injection provide appropriate arterial phase images with reducing artifacts on gadoxetic acid-DTPA (Gd-EOB-DTPA)-enhanced hepatic MR imaging? J Magn Reson Imaging 2010;32:334-340 https://doi.org/10.1002/jmri.22241
  32. Nakamura S, Nakaura T, Kidoh M, Utsunomiya D, Doi Y, Harada K, et al. Timing of the hepatic arterial phase at Gd-EOB-DTPA-enhanced hepatic dynamic MRI: comparison of the test-injection and the fixed-time delay method. J Magn Reson Imaging 2013;38:548-554 https://doi.org/10.1002/jmri.24017
  33. Fujinaga Y, Ohya A, Tokoro H, Yamada A, Ueda K, Ueda H, et al. Radial volumetric imaging breath-hold examination (VIBE) with k-space weighted image contrast (KWIC) for dynamic gadoxetic acid (Gd-EOB-DTPA)-enhanced MRI of the liver: advantages over Cartesian VIBE in the arterial phase. Eur Radiol 2014;24:1290-1299 https://doi.org/10.1007/s00330-014-3122-0
  34. Pietryga JA, Burke LM, Marin D, Jaffe TA, Bashir MR. Respiratory motion artifact affecting hepatic arterial phase imaging with gadoxetate disodium: examination recovery with a multiple arterial phase acquisition. Radiology 2014;271:426-434 https://doi.org/10.1148/radiol.13131988
  35. Hope TA, Fowler KJ, Sirlin CB, Costa EA, Yee J, Yeh BM, et al. Hepatobiliary agents and their role in LI-RADS. Abdom Imaging 2015;40:613-625 https://doi.org/10.1007/s00261-014-0227-5
  36. Choi JY, Lee JM, Sirlin CB. CT and MR imaging diagnosis and staging of hepatocellular carcinoma: part II. Extracellular agents, hepatobiliary agents, and ancillary imaging features. Radiology 2014;273:30-50 https://doi.org/10.1148/radiol.14132362
  37. Choi SH, Byun JH, Lim YS, Yu E, Lee SJ, Kim SY, et al. Diagnostic criteria for hepatocellular carcinoma $\leq$ 3 cm with hepatocyte-specific contrast-enhanced magnetic resonance imaging. J Hepatol 2016;64:1099-1107 https://doi.org/10.1016/j.jhep.2016.01.018
  38. Joo I, Lee JM, Lee DH, Jeon JH, Han JK, Choi BI. Noninvasive diagnosis of hepatocellular carcinoma on gadoxetic acid-enhanced MRI: can hypointensity on the hepatobiliary phase be used as an alternative to washout? Eur Radiol 2015;25:2859-2868 https://doi.org/10.1007/s00330-015-3686-3
  39. Kudo M, Matsui O, Izumi N, Iijima H, Kadoya M, Imai Y; Liver Cancer Study Group of Japan. Surveillance and diagnostic algorithm for hepatocellular carcinoma proposed by the Liver Cancer Study Group of Japan: 2014 update. Oncology 2014;87 Suppl 1:7-21
  40. Joo I, Lee JM. Recent advances in the imaging diagnosis of hepatocellular carcinoma: value of gadoxetic acid-enhanced MRI. Liver Cancer 2016;5:67-87
  41. Yoon JH, Park JW, Lee JM. Noninvasive diagnosis of hepatocellular carcinoma: elaboration on Korean Liver Cancer Study Group-National Cancer Center Korea practice guidelines compared with other guidelines and remaining issues. Korean J Radiol 2016;17:7-24 https://doi.org/10.3348/kjr.2016.17.1.7
  42. Lee YJ, Lee JM, Lee JS, Lee HY, Park BH, Kim YH, et al. Hepatocellular carcinoma: diagnostic performance of multidetector CT and MR imaging-a systematic review and meta-analysis. Radiology 2015;275:97-109 https://doi.org/10.1148/radiol.14140690
  43. Haradome H, Grazioli L, Tinti R, Morone M, Motosugi U, Sano K, et al. Additional value of gadoxetic acid-DTPA-enhanced hepatobiliary phase MR imaging in the diagnosis of earlystage hepatocellular carcinoma: comparison with dynamic triple-phase multidetector CT imaging. J Magn Reson Imaging 2011;34:69-78 https://doi.org/10.1002/jmri.22588
  44. Lee DH, Lee JM, Baek JH, Shin CI, Han JK, Choi BI. Diagnostic performance of gadoxetic acid-enhanced liver MR imaging in the detection of HCCs and allocation of transplant recipients on the basis of the Milan criteria and UNOS guidelines: correlation with histopathologic findings. Radiology 2015;274:149-160 https://doi.org/10.1148/radiol.14140141
  45. Channual S, Tan N, Siripongsakun S, Lassman C, Lu DS, Raman SS. Gadoxetate disodium-enhanced MRI to differentiate dysplastic nodules and grade of hepatocellular carcinoma: correlation with histopathology. AJR Am J Roentgenol 2015;205:546-553 https://doi.org/10.2214/AJR.14.12716
  46. Jeong WK, Kim YK, Song KD, Choi D, Lim HK. The MR imaging diagnosis of liver diseases using gadoxetic acid: emphasis on hepatobiliary phase. Clin Mol Hepatol 2013;19:360-366 https://doi.org/10.3350/cmh.2013.19.4.360
  47. Joo I, Lee JM, Lee DH, Ahn SJ, Lee ES, Han JK. Liver imaging reporting and data system v2014 categorization of hepatocellular carcinoma on gadoxetic acid-enhanced MRI: comparison with multiphasic multidetector computed tomography. J Magn Reson Imaging 2017;45:731-740 https://doi.org/10.1002/jmri.25406
  48. Park VY, Choi JY, Chung YE, Kim H, Park MS, Lim JS, et al. Dynamic enhancement pattern of HCC smaller than 3 cm in diameter on gadoxetic acid-enhanced MRI: comparison with multiphasic MDCT. Liver Int 2014;34:1593-1602 https://doi.org/10.1111/liv.12550
  49. Shah A, Tang A, Santillan C, Sirlin C. Cirrhotic liver: what's that nodule? The LI-RADS approach. J Magn Reson Imaging 2016;43:281-294 https://doi.org/10.1002/jmri.24937
  50. Doo KW, Lee CH, Choi JW, Lee J, Kim KA, Park CM. "Pseudo washout" sign in high-flow hepatic hemangioma on gadoxetic acid contrast-enhanced MRI mimicking hypervascular tumor. AJR Am J Roentgenol 2009;193:W490-W496 https://doi.org/10.2214/AJR.08.1732
  51. Peporte AR, Sommer WH, Nikolaou K, Reiser MF, Zech CJ. Imaging features of intrahepatic cholangiocarcinoma in Gd-EOB-DTPA-enhanced MRI. Eur J Radiol 2013;82:e101-e106 https://doi.org/10.1016/j.ejrad.2012.10.010
  52. Kang Y, Lee JM, Kim SH, Han JK, Choi BI. Intrahepatic mass-forming cholangiocarcinoma: enhancement patterns on gadoxetic acid-enhanced MR images. Radiology 2012;264:751-760 https://doi.org/10.1148/radiol.12112308
  53. Nam SJ, Yu JS, Cho ES, Kim JH, Chung JJ. High-flow haemangiomas versus hypervascular hepatocellular carcinoma showing "pseudo-washout" on gadoxetic acidenhanced hepatic MRI: value of diffusion-weighted imaging in the differential diagnosis of small lesions. Clin Radiol 2017;72:247-254 https://doi.org/10.1016/j.crad.2016.09.020
  54. Outwater EK, Ito K, Siegelman E, Martin CE, Bhatia M, Mitchell DG. Rapidly enhancing hepatic hemangiomas at MRI: distinction from malignancies with T2-weighted images. J Magn Reson Imaging 1997;7:1033-1039 https://doi.org/10.1002/jmri.1880070615
  55. Takahashi K, Obeid J, Burmeister CS, Bruno DA, Kazimi MM, Yoshida A, et al. Intrahepatic cholangiocarcinoma in the liver explant after liver transplantation: histological differentiation and prognosis. Ann Transplant 2016;21:208-215 https://doi.org/10.12659/AOT.895936
  56. Kim JH, Won HJ, Shin YM, Kim KA, Kim PN. Radiofrequency ablation for the treatment of primary intrahepatic cholangiocarcinoma. AJR Am J Roentgenol 2011;196:W205-W209 https://doi.org/10.2214/AJR.10.4937
  57. Roskams T. Anatomic pathology of hepatocellular carcinoma: impact on prognosis and response to therapy. Clin Liver Dis 2011;15:245-259, vii-x https://doi.org/10.1016/j.cld.2011.03.004
  58. Park MJ, Kim YS, Lee WJ, Lim HK, Rhim H, Lee J. Outcomes of follow-up CT for small (5-10-mm) arterially enhancing nodules in the liver and risk factors for developing hepatocellular carcinoma in a surveillance population. Eur Radiol 2010;20:2397-2404 https://doi.org/10.1007/s00330-010-1810-y
  59. Forner A, Vilana R, Ayuso C, Bianchi L, Sole M, Ayuso JR, et al. Diagnosis of hepatic nodules 20 mm or smaller in cirrhosis: prospective validation of the noninvasive diagnostic criteria for hepatocellular carcinoma. Hepatology 2008;47:97-104
  60. Hwang SH, Yu JS, Kim KW, Kim JH, Chung JJ. Small hypervascular enhancing lesions on arterial phase images of multiphase dynamic computed tomography in cirrhotic liver: fate and implications. J Comput Assist Tomogr 2008;32:39-45 https://doi.org/10.1097/RCT.0b013e318064c76b
  61. Holland AE, Hecht EM, Hahn WY, Kim DC, Babb JS, Lee VS, et al. Importance of small (< or = 20-mm) enhancing lesions seen only during the hepatic arterial phase at MR imaging of the cirrhotic liver: evaluation and comparison with whole explanted liver. Radiology 2005;237:938-944 https://doi.org/10.1148/radiol.2373041364
  62. Byrnes V, Shi H, Kiryu S, Rofsky NM, Afdhal NH. The clinical outcome of small (< 20 mm) arterially enhancing nodules on MRI in the cirrhotic liver. Am J Gastroenterol 2007;102:1654-1659 https://doi.org/10.1111/j.1572-0241.2007.01338.x
  63. Yu MH, Kim JH, Yoon JH, Kim HC, Chung JW, Han JK, et al. Small ($\leq$ 1-cm) hepatocellular carcinoma: diagnostic performance and imaging features at gadoxetic acidenhanced MR imaging. Radiology 2014;271:748-760 https://doi.org/10.1148/radiol.14131996
  64. Lee MW, Kim YJ, Park HS, Yu NC, Jung SI, Ko SY, et al. Targeted sonography for small hepatocellular carcinoma discovered by CT or MRI: factors affecting sonographic detection. AJR Am J Roentgenol 2010;194:W396-W400 https://doi.org/10.2214/AJR.09.3171
  65. Kim PN, Choi D, Rhim H, Rha SE, Hong HP, Lee J, et al. Planning ultrasound for percutaneous radiofrequency ablation to treat small ($\leq$ 3 cm) hepatocellular carcinomas detected on computed tomography or magnetic resonance imaging: a multicenter prospective study to assess factors affecting ultrasound visibility. J Vasc Interv Radiol 2012;23:627-634 https://doi.org/10.1016/j.jvir.2011.12.026
  66. Kim SH, Kim SH, Lee J, Kim MJ, Jeon YH, Park Y, et al. Gadoxetic acid-enhanced MRI versus triple-phase MDCT for the preoperative detection of hepatocellular carcinoma. AJR Am J Roentgenol 2009;192:1675-1681 https://doi.org/10.2214/AJR.08.1262
  67. Sano K, Ichikawa T, Motosugi U, Sou H, Muhi AM, Matsuda M, et al. Imaging study of early hepatocellular carcinoma: usefulness of gadoxetic acid-enhanced MR imaging. Radiology 2011;261:834-844 https://doi.org/10.1148/radiol.11101840
  68. Chen L, Zhang L, Bao J, Zhang J, Li C, Xia Y, et al. Comparison of MRI with liver-specific contrast agents and multidetector row CT for the detection of hepatocellular carcinoma: a meta-analysis of 15 direct comparative studies. Gut 2013;62:1520-1521 https://doi.org/10.1136/gutjnl-2013-305231
  69. Kierans AS, Kang SK, Rosenkrantz AB. The diagnostic performance of dynamic contrast-enhanced MR imaging for detection of small hepatocellular carcinoma measuring up to 2 cm: a meta-analysis. Radiology 2016;278:82-94 https://doi.org/10.1148/radiol.2015150177
  70. Song KD, Kim SH, Lim HK, Jung SH, Sohn I, Kim HS. Subcentimeter hypervascular nodule with typical imaging findings of hepatocellular carcinoma in patients with history of hepatocellular carcinoma: natural course on serial gadoxetic acid-enhanced MRI and diffusion-weighted imaging. Eur Radiol 2015;25:2789-2796 https://doi.org/10.1007/s00330-015-3680-9
  71. Jang KM, Kim SH, Kim YK, Choi D. Imaging features of subcentimeter hypointense nodules on gadoxetic acidenhanced hepatobiliary phase MR imaging that progress to hypervascular hepatocellular carcinoma in patients with chronic liver disease. Acta Radiol 2015;56:526-535 https://doi.org/10.1177/0284185114534652
  72. Livraghi T, Meloni F, Di Stasi M, Rolle E, Solbiati L, Tinelli C, et al. Sustained complete response and complications rates after radiofrequency ablation of very early hepatocellular carcinoma in cirrhosis: is resection still the treatment of choice? Hepatology 2008;47:82-89
  73. Arii S, Yamaoka Y, Futagawa S, Inoue K, Kobayashi K, Kojiro M, et al. Results of surgical and nonsurgical treatment for small-sized hepatocellular carcinomas: a retrospective and nationwide survey in Japan. The Liver Cancer Study Group of Japan. Hepatology 2000;32:1224-1229 https://doi.org/10.1053/jhep.2000.20456
  74. Takayama T, Makuuchi M, Hirohashi S, Sakamoto M, Yamamoto J, Shimada K, et al. Early hepatocellular carcinoma as an entity with a high rate of surgical cure. Hepatology 1998;28:1241-1246 https://doi.org/10.1002/hep.510280511
  75. Lu DS, Yu NC, Raman SS, Limanond P, Lassman C, Murray K, et al. Radiofrequency ablation of hepatocellular carcinoma: treatment success as defined by histologic examination of the explanted liver. Radiology 2005;234:954-960 https://doi.org/10.1148/radiol.2343040153
  76. Kang TW, Rhim H. Recent advances in tumor ablation for hepatocellular carcinoma. Liver Cancer 2015;4:176-187 https://doi.org/10.1159/000367740
  77. Park MJ, Kim YK, Lee MW, Lee WJ, Kim YS, Kim SH, et al. Small hepatocellular carcinomas: improved sensitivity by combining gadoxetic acid-enhanced and diffusion-weighted MR imaging patterns. Radiology 2012;264:761-770 https://doi.org/10.1148/radiol.12112517
  78. Lee MH, Kim SH, Park MJ, Park CK, Rhim H. Gadoxetic acid-enhanced hepatobiliary phase MRI and high-bvalue diffusion-weighted imaging to distinguish welldifferentiated hepatocellular carcinomas from benign nodules in patients with chronic liver disease. AJR Am J Roentgenol 2011;197:W868-W875 https://doi.org/10.2214/AJR.10.6237
  79. Kim JE, Kim SH, Lee SJ, Rhim H. Hypervascular hepatocellular carcinoma 1 cm or smaller in patients with chronic liver disease: characterization with gadoxetic acidenhanced MRI that includes diffusion-weighted imaging. AJR Am J Roentgenol 2011;196:W758-W765 https://doi.org/10.2214/AJR.10.4394
  80. Park MJ, Kim YK, Lee MH, Lee JH. Validation of diagnostic criteria using gadoxetic acid-enhanced and diffusionweighted MR imaging for small hepatocellular carcinoma (<=2.0 cm) in patients with hepatitis-induced liver cirrhosis. Acta Radiol 2013;54:127-136 https://doi.org/10.1258/ar.2012.120262
  81. Shindoh J, Andreou A, Aloia TA, Zimmitti G, Lauwers GY, Laurent A, et al. Microvascular invasion does not predict long-term survival in hepatocellular carcinoma up to 2 cm: reappraisal of the staging system for solitary tumors. Ann Surg Oncol 2013;20:1223-1229 https://doi.org/10.1245/s10434-012-2739-y
  82. Hwang S, Lee YJ, Kim KH, Ahn CS, Moon DB, Ha TY, et al. The impact of tumor size on long-term survival outcomes after resection of solitary hepatocellular carcinoma: singleinstitution experience with 2558 patients. J Gastrointest Surg 2015;19:1281-1290 https://doi.org/10.1007/s11605-015-2849-5
  83. Sangiovanni A, Manini MA, Iavarone M, Romeo R, Forzenigo LV, Fraquelli M, et al. The diagnostic and economic impact of contrast imaging techniques in the diagnosis of small hepatocellular carcinoma in cirrhosis. Gut 2010;59:638-644 https://doi.org/10.1136/gut.2009.187286
  84. Khalili K, Kim TK, Jang HJ, Haider MA, Khan L, Guindi M, et al. Optimization of imaging diagnosis of 1-2 cm hepatocellular carcinoma: an analysis of diagnostic performance and resource utilization. J Hepatol 2011;54:723-728 https://doi.org/10.1016/j.jhep.2010.07.025
  85. Wu LM, Xu JR, Gu HY, Hua J, Chen J, Zhu J, et al. Is liverspecific gadoxetic acid-enhanced magnetic resonance imaging a reliable tool for detection of hepatocellular carcinoma in patients with chronic liver disease? Dig Dis Sci 2013;58:3313-3325 https://doi.org/10.1007/s10620-013-2790-y
  86. Kitao A, Matsui O, Yoneda N, Kozaka K, Shinmura R, Koda W, et al. The uptake transporter OATP8 expression decreases during multistep hepatocarcinogenesis: correlation with gadoxetic acid enhanced MR imaging. Eur Radiol 2011;21:2056-2066 https://doi.org/10.1007/s00330-011-2165-8
  87. Choi JY, Lee HC, Yim JH, Shim JH, Lim YS, Shin YM, et al. Focal nodular hyperplasia or focal nodular hyperplasialike lesions of the liver: a special emphasis on diagnosis. J Gastroenterol Hepatol 2011;26:1004-1009 https://doi.org/10.1111/j.1440-1746.2011.06659.x
  88. Kogita S, Imai Y, Okada M, Kim T, Onishi H, Takamura M, et al. Gd-EOB-DTPA-enhanced magnetic resonance images of hepatocellular carcinoma: correlation with histological grading and portal blood flow. Eur Radiol 2010;20:2405-2413 https://doi.org/10.1007/s00330-010-1812-9
  89. Yoon JH, Lee JM, Yang HK, Lee KB, Jang JJ, Han JK, et al. Non-hypervascular hypointense nodules $\geq$ 1 cm on the hepatobiliary phase of gadoxetic acid-enhanced magnetic resonance imaging in cirrhotic livers. Dig Dis 2014;32:678-689 https://doi.org/10.1159/000368000
  90. Golfieri R, Grazioli L, Orlando E, Dormi A, Lucidi V, Corcioni B, et al. Which is the best MRI marker of malignancy for atypical cirrhotic nodules: hypointensity in hepatobiliary phase alone or combined with other features? Classification after Gd-EOB-DTPA administration. J Magn Reson Imaging 2012;36:648-657 https://doi.org/10.1002/jmri.23685
  91. Akai H, Matsuda I, Kiryu S, Tajima T, Takao H, Watanabe Y, et al. Fate of hypointense lesions on Gd-EOB-DTPA-enhanced magnetic resonance imaging. Eur J Radiol 2012;81:2973-2977 https://doi.org/10.1016/j.ejrad.2012.01.007
  92. Motosugi U. Hypovascular hypointense nodules on hepatocyte phase gadoxetic acid-enhanced MR images: too early or too progressed to determine hypervascularity. Radiology 2013;267:317-318
  93. Ichikawa S, Ichikawa T, Motosugi U, Sano K, Morisaka H, Enomoto N, et al. Presence of a hypovascular hepatic nodule showing hypointensity on hepatocyte-phase image is a risk factor for hypervascular hepatocellular carcinoma. J Magn Reson Imaging 2014;39:293-297 https://doi.org/10.1002/jmri.24164
  94. Kim YK, Lee WJ, Park MJ, Kim SH, Rhim H, Choi D. Hypovascular hypointense nodules on hepatobiliary phase gadoxetic acid-enhanced MR images in patients with cirrhosis: potential of DW imaging in predicting progression to hypervascular HCC. Radiology 2012;265:104-114 https://doi.org/10.1148/radiol.12112649
  95. Yamamoto A, Ito K, Tamada T, Higaki A, Kanki A, Sato T, et al. Newly developed hypervascular hepatocellular carcinoma during follow-up periods in patients with chronic liver disease: observation in serial gadoxetic acid-enhanced MRI. AJR Am J Roentgenol 2013;200:1254-1260 https://doi.org/10.2214/AJR.12.9136
  96. Lee DH, Lee JM, Lee JY, Kim SH, Kim JH, Yoon JH, et al. Non-hypervascular hepatobiliary phase hypointense nodules on gadoxetic acid-enhanced MRI: risk of HCC recurrence after radiofrequency ablation. J Hepatol 2015;62:1122-1130
  97. Toyoda H, Kumada T, Tada T, Sone Y, Maeda A, Kaneoka Y. Non-hypervascular hypointense nodules on Gd-EOB-DTPAenhanced MRI as a predictor of outcomes for early-stage HCC. Hepatol Int 2015;9:84-92 https://doi.org/10.1007/s12072-014-9553-5
  98. Merkle EM, Zech CJ, Bartolozzi C, Bashir MR, Ba-Ssalamah A, Huppertz A, et al. Consensus report from the 7th international forum for liver magnetic resonance imaging. Eur Radiol 2016;26:674-682 https://doi.org/10.1007/s00330-015-3873-2
  99. Motosugi U, Bannas P, Sano K, Reeder SB. Hepatobiliary MR contrast agents in hypovascular hepatocellular carcinoma. J Magn Reson Imaging 2015;41:251-265 https://doi.org/10.1002/jmri.24712
  100. Choi BI, Lee JM, Kim TK, Dioguardi Burgio M, Vilgrain V. Diagnosing borderline hepatic nodules in hepatocarcinogenesis: imaging performance. AJR Am J Roentgenol 2015;205:10-21 https://doi.org/10.2214/AJR.14.12655
  101. Golfieri R, Renzulli M, Lucidi V, Corcioni B, Trevisani F, Bolondi L. Contribution of the hepatobiliary phase of Gd-EOB-DTPA-enhanced MRI to dynamic MRI in the detection of hypovascular small ($\leq$ 2 cm) HCC in cirrhosis. Eur Radiol 2011;21:1233-1242 https://doi.org/10.1007/s00330-010-2030-1
  102. Hwang J, Kim YK, Jeong WK, Choi D, Rhim H, Lee WJ. Nonhypervascular hypointense nodules at gadoxetic acidenhanced MR imaging in chronic liver disease: diffusionweighted imaging for characterization. Radiology 2015;276:137-146 https://doi.org/10.1148/radiol.15141350
  103. Xu PJ, Yan FH, Wang JH, Shan Y, Ji Y, Chen CZ. Contribution of diffusion-weighted magnetic resonance imaging in the characterization of hepatocellular carcinomas and dysplastic nodules in cirrhotic liver. J Comput Assist Tomogr 2010;34:506-512 https://doi.org/10.1097/RCT.0b013e3181da3671
  104. Hyodo T, Murakami T, Imai Y, Okada M, Hori M, Kagawa Y, et al. Hypovascular nodules in patients with chronic liver disease: risk factors for development of hypervascular hepatocellular carcinoma. Radiology 2013;266:480-490 https://doi.org/10.1148/radiol.12112677
  105. Takechi M, Tsuda T, Yoshioka S, Murata S, Tanaka H, Hirooka M, et al. Risk of hypervascularization in small hypovascular hepatic nodules showing hypointense in the hepatobiliary phase of gadoxetic acid-enhanced MRI in patients with chronic liver disease. Jpn J Radiol 2012;30:743-751 https://doi.org/10.1007/s11604-012-0120-5
  106. Takayama Y, Nishie A, Nakayama T, Asayama Y, Ishigami K, Kakihara D, et al. Hypovascular hepatic nodule showing hypointensity in the hepatobiliary phase of gadoxetic acid-enhanced MRI in patients with chronic liver disease: prediction of malignant transformation. Eur J Radiol 2012;81:3072-3078 https://doi.org/10.1016/j.ejrad.2012.05.008
  107. Di Pietropaolo M, Briani C, Federici GF, Marignani M, Begini P, Delle Fave G, et al. Comparison of diffusion-weighted imaging and gadoxetic acid-enhanced MR images in the evaluation of hepatocellular carcinoma and hypovascular hepatocellular nodules. Clin Imaging 2015;39:468-475 https://doi.org/10.1016/j.clinimag.2014.12.020
  108. Midorikawa Y, Takayama T, Nara S, Hashimoto T, Omichi K, Ebisawa K, et al. No need of immediate treatment for hypovascular tumors associated with hepatocellular carcinoma. World J Surg 2016;40:2460-2465 https://doi.org/10.1007/s00268-016-3548-4
  109. Matsuda M, Ichikawa T, Amemiya H, Maki A, Watanabe M, Kawaida H, et al. Preoperative gadoxetic acid-enhanced MRI and simultaneous treatment of early hepatocellular carcinoma prolonged recurrence-free survival of progressed hepatocellular carcinoma patients after hepatic resection. HPB Surg 2014;2014:641685
  110. Midorikawa Y, Takayama T, Shimada K, Nakayama H, Higaki T, Moriguchi M, et al. Marginal survival benefit in the treatment of early hepatocellular carcinoma. J Hepatol 2013;58:306-311 https://doi.org/10.1016/j.jhep.2012.09.026
  111. An C, Rhee H, Han K, Choi JY, Park YN, Park MS, et al. Added value of smooth hypointense rim in the hepatobiliary phase of gadoxetic acid-enhanced MRI in identifying tumour capsule and diagnosing hepatocellular carcinoma. Eur Radiol 2016 Oct 21 [Epup]. http://dx.doi.org/10.1007/s00330-016-4634-6
  112. Galea N, Cantisani V, Taouli B. Liver lesion detection and characterization: role of diffusion-weighted imaging. J Magn Reson Imaging 2013;37:1260-1276 https://doi.org/10.1002/jmri.23947

Cited by

  1. Diagnostic accuracy of prospective application of the Liver Imaging Reporting and Data System (LI-RADS) in gadoxetate-enhanced MRI vol.28, pp.5, 2017, https://doi.org/10.1007/s00330-017-5188-y
  2. Percutaneous US/MRI Fusion-guided Radiofrequency Ablation for Recurrent Subcentimeter Hepatocellular Carcinoma: Technical Feasibility and Therapeutic Outcomes vol.288, pp.3, 2018, https://doi.org/10.1148/radiol.2018172743
  3. The Diagnostic Performance of Liver MRI without Intravenous Contrast for Detecting Hepatocellular Carcinoma: A Case-Controlled Feasibility Study vol.19, pp.4, 2018, https://doi.org/10.3348/kjr.2018.19.4.568
  4. Noninvasive imaging of hepatocellular carcinoma: From diagnosis to prognosis vol.24, pp.22, 2017, https://doi.org/10.3748/wjg.v24.i22.2348
  5. Intraindividual Comparison between Gadoxetate-Enhanced Magnetic Resonance Imaging and Dynamic Computed Tomography for Characterizing Focal Hepatic Lesions: A Multicenter, Multireader Study vol.20, pp.12, 2017, https://doi.org/10.3348/kjr.2019.0363
  6. A Glimpse on Trends and Characteristics of Recent Articles Published in the Korean Journal of Radiology vol.20, pp.12, 2019, https://doi.org/10.3348/kjr.2019.0928
  7. Optimal criteria for hepatocellular carcinoma diagnosis using CT in patients undergoing liver transplantation vol.29, pp.2, 2017, https://doi.org/10.1007/s00330-018-5557-1
  8. Identification of Arterial Hyperenhancement in CT and MRI in Patients with Hepatocellular Carcinoma: Value of Unenhanced Images vol.20, pp.2, 2017, https://doi.org/10.3348/kjr.2018.0339
  9. Retrospective validation of a new diagnostic criterion for hepatocellular carcinoma on gadoxetic acid-enhanced MRI: can hypointensity on the hepatobiliary phase be used as an alternative to washout wi vol.29, pp.4, 2019, https://doi.org/10.1007/s00330-018-5727-1
  10. Hepatocellular Carcinoma: Current Imaging Modalities for Diagnosis and Prognosis vol.64, pp.4, 2019, https://doi.org/10.1007/s10620-019-05547-0
  11. Emerging Role of Hepatobiliary Magnetic Resonance Contrast Media and Contrast-Enhanced Ultrasound for Noninvasive Diagnosis of Hepatocellular Carcinoma: Emphasis on Recent Updates in Major Guidelines vol.20, pp.6, 2017, https://doi.org/10.3348/kjr.2018.0450
  12. Second shot arterial phase to overcome degraded hepatic arterial phase in liver MR imaging vol.29, pp.6, 2017, https://doi.org/10.1007/s00330-018-5897-x
  13. Non-hypervascular hepatobiliary phase hypointense nodules on gadoxetic acid-enhanced MR can help determine the treatment method for HCC vol.29, pp.6, 2017, https://doi.org/10.1007/s00330-018-5941-x
  14. Optimal lexicon of gadoxetic acid-enhanced magnetic resonance imaging for the diagnosis of hepatocellular carcinoma modified from LI-RADS vol.44, pp.9, 2019, https://doi.org/10.1007/s00261-019-02077-1
  15. Radiologic Evaluation and Structured Reporting Form for Extrahepatic Bile Duct Cancer: 2019 Consensus Recommendations from the Korean Society of Abdominal Radiology vol.21, pp.None, 2020, https://doi.org/10.3348/kjr.2019.0803
  16. Characteristics of Recent Articles Published in the Korean Journal of Radiology Based on the Citation Frequency vol.21, pp.12, 2020, https://doi.org/10.3348/kjr.2020.1322
  17. Value of gadoxetic acid‐enhanced MRI and diffusion‐weighted imaging in the differentiation of hypervascular hyperplastic nodule from small (<3 cm) hypervascular hepatocellular carcinoma vol.51, pp.1, 2017, https://doi.org/10.1002/jmri.26768
  18. Comparison of diagnostic performance of non-contrast MRI and abbreviated MRI using gadoxetic acid in initially diagnosed hepatocellular carcinoma patients: a simulation study of surveillance for hepat vol.30, pp.8, 2017, https://doi.org/10.1007/s00330-020-06754-4
  19. Introducing “Recommendation and Guideline” of the Korean Journal of Radiology vol.22, pp.12, 2017, https://doi.org/10.3348/kjr.2021.0785
  20. Identifying the Prognostic Risk Factors of Synaptojanin 2 and Its Underlying Perturbations Pathways in Hepatocellular Carcinoma vol.12, pp.1, 2017, https://doi.org/10.1080/21655979.2021.1890399
  21. Extended application of subtraction arterial phase imaging in LI-RADS version 2018: a strategy to improve the diagnostic performance for hepatocellular carcinoma on gadoxetate disodium-enhanced MRI vol.31, pp.3, 2021, https://doi.org/10.1007/s00330-020-07229-2